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Abstract

Text data is inherently ultra-high dimensional, which makes machine learning techniques

indispensable for textual analysis. Text also tends to be a highly selected outcome—journalists,

speechwriters, and others carefully craft messages to target the limited attention of their audi-

ences. We develop an economically motivated high dimensional selection model that improves

machine learning from text (and from sparse counts data more generally). Our model is espe-

cially useful in cases where the cover/no-cover choice is separate or more interesting than the

coverage quantity choice. Our design allows for parallel estimation, making the model highly

computationally scalable. We apply our framework to backcast, nowcast, and forecast financial

variables using newspaper text, and find that it substantially improves out-of-sample fit relative

to alternative state-of-the-art approaches.
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1 Introduction

Digital text is increasingly available to social scientists in the form of newspapers, blogs, tweets,

regulatory filings, congressional records and more. Two attributes of text differentiate it from

other types of data typically used by economists. First, text data are inherently ultra-high dimen-

sional—unique phrases in a corpus (roughly equivalent to the set of variables) often number in the

millions. Second, phrase counts are sparse—most phrases have a count of zero in most documents.

Due to these attributes, statistical learning from text requires techniques commonly used in ma-

chine learning (Gentzkow, Kelly, and Taddy, 2019). Unlike data often used by economists, word or

phrase counts in text data are inherently high dimensional because many words are used to describe

similar phenomena. Statistical learning from text therefore requires regularization techniques com-

monly used in machine learning. This paper proposes a new methodology that fully exploits the

sparseness of text data. We show that modeling the extensive margin decision to use a particular

word reveals information that leads to large improvements in out of sample prediction.

A standard econometric approach for describing counts data is multinomial logistic regression.

Unfortunately, this model is computationally intractable in most text-related applications because

the number of categories is extremely large. Taddy (2015) shows that one can overcome this

dimensionality problem by approximating the multinomial with cleverly shifted independent pois-

son regressions, one for each word. This distributed multinomial regression (DMR) has the great

advantage that the poisson regression can be distributed across parallel computing units.

The poisson model has the disadvantage that it provides a poor description of word counts.

In particular, there tends to be a much higher proportion of phrases having zero counts than the

poisson distribution allows. If one restricts attention to positive counts, however, a (truncated)

poisson is a good approximation for the data. This sparsity—the additional probability mass on

zero counts—is a feature of many text samples (and is why most text analysis software packages

use sparse matrices to store word counts efficiently).1

We propose a new regression methodology for text-based regression. Our hurdle distributed

multinomial regression (HDMR) model consists of two components that are tailored to the twin
1Zipf (1935) observed that language follows a power law. Rennie, Shih, Teevan, and Karger (2003) suggest a

multinomial naive bayes modification to emulate such power law distributions. Wilbur and Kim (2009) find that in
some cases, word “burstiness” is so strong that additional occurrences of a word essentially add no useful information
to a classifier.
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challenges of high dimensionality and sparsity of text data. To accommodate the dimensionality of

text, we build on Taddy’s DMR insight of independent phrase-level models. However, we replace

each phrase-level poisson regression with a hurdle model that has two parts. The first part is a

selection equation. This models the text producer’s choice of whether or not to use a particular

phrase. The second part is a positive counts model, which describes the choice of how many times

a word is used (conditional on being used at all).2

Our two-part HDMR model thus generalizes DMR by decomposing language usage decisions

into an extensive margin (the selection equation) and intensive margin (the positive counts model).

Explicitly modeling the extensive margin of phrase choice has dual advantages. The statistical

advantage is that it introduces a modeling component dedicated to capturing the excess probability

mass on zero counts. We use the hurdle approach of Mullahy (1986) to model selection because it

allows the extensive and intensive components to be estimated independently, and these can also

be distributed at essentially no additional computation cost relative to DMR.3

The economic advantage of our model is that it adapts the selection methodology of Heckman

(1979) to a high dimensional setting. HDMR provides a means for estimating models in which

sparsity is of first-order economic importance. In text data, HDMR is particularly useful when an

author’s choice to cover or not cover a topic is more economically interesting than the choice of

coverage intensity. For example, newspaper publishers’ extensive margin of coverage is informative

about their news production technology and the constrained attention of its audience. The selection

decision is a key lever that writers use to signal their ideological type to readers (e.g. Mullainathan

and Shleifer, 2005; Gentzkow and Shapiro, 2006). Politicians carefully select phrases that resonate

with voters in congressional speech (Gentzkow, Shapiro, and Taddy, 2019), and fixed costs of using

censored or socially taboo words may generate further sparsity (Michel, Shen, Aiden, Veres, Gray,

Pickett, Hoiberg, Clancy, Norvig, Orwant, et al., 2011). Sparsity reflects the suboptimality of

writing about a particular topic just a little bit: In order for the signal to be comprehensible there

must be a minimum amount of exposition, yet the total amount of text cannot exceed the audience’s

attention span.4 Gabaix (2014) shows that, when agents are boundedly rational, sparsity emerges
2We use L1 regularization (lasso) to further manage model dimensionality.
3The hurdle model is widely used, for example, in health economics. Greene (2007) surveys models for counts.
4Academic researchers know this well, and therefore tend to use consistent wording to clarify their argument,

rather than alternate between synonyms to expound the same contention.
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in equilibrium for a wide variety of economic settings under otherwise general conditions.

Our model also serves as a basis for exploring the relationships between phrases and numerical

covariates such as macroeconomic state variables or financial markets prices, which enter as con-

ditioning variables for the distribution of phrase counts. First, the model doubles as a dimension

reduction method for text. Like DMR, HDMR generates sufficient reductions of text by projecting

phrase counts onto covariates. Sufficient reductions serve as indices that best summarize the text

as it relates to each covariate. HDMR produces two such sufficient reductions per covariate: one for

word inclusion (the extensive margin) and the other for repetition (the intensive margin). Second,

the model can be flipped in order to predict covariates based on text via an inverse regression. This

is useful, for example, to backcast key macro variables that have limited histories or missing data,

or for “nowcasting” when text is available in a more timely manner than the forecast target.

To illustrate our methodology, we use HDMR to backcast a measure of equity capitalization in

the financial sector using the text of The Wall Street Journal. The intermediary capital ratio (icr)

is the central state variable in the growing literature on intermediary-based asset pricing, and helps

explain the behavior of risk premia in a wide array of asset classes (He, Kelly, and Manela, 2017).

However, it is only available beginning in 1970. From our long sample of Wall Street Journal text,

we estimate an icr series back to 1927 to investigate the interaction between icr and asset prices

in the historical period.

We find that HDMR gives substantially improved out-of-sample predictions of icr compared to

DMR, which indicates that modeling the selection decision helps with forecasting in this context.

HDMR also outperforms support vector regression (Vapnik, 2000), which Manela and Moreira

(2017) use for text-based backcasting of the VIX stock market volatility index. Unlike support

vector regression, both DMR and HDMR can concentrate on individual variables that behave

differently from word counts (i.e. non-text control variables), but are useful for prediction. We find

that the out-of-sample advantage of HDMR over DMR increases with the sparsity of the text. As

we omit more infrequent words from the dictionary—a common approach to ad hoc prefiltering of

phrases—the document term matrix becomes denser and the text becomes better described by a

selection-free DMR model. At the same time, however, more stringent phrase filters lead to a large

deterioration in prediction accuracy from either method. Evidently, less filtering (allowing for more

phrases) makes for a better prediction model, and also magnifies the benefits of accounting for text

4



selection via the hurdle model.

The news-implied intermediary capital ratio series provides for more powerful tests that sup-

port central predictions of intermediary asset pricing theory. The results show that times when

intermediaries are highly capitalized are “good times” when these marginal investors demand a

relatively low premium to hold risky assets. Our findings imply that news text of The Wall Street

Journal provides a strong signal about stock market risk premia, over and above common financial

market covariates such as the price-dividend ratio and stock volatility.

In our second application, we ask whether HDMR is able to extract information from text of

The Wall Street Journal that is useful for forecasting U.S. macroeconomic indicators (beyond that

of a benchmark principal components method suggested by Stock and Watson, 2012). We find that

the information from text significantly improves over benchmark forecasts for key macroeconomic

indicators such as nonfarm payroll employment and housing starts, and that the advantages of

text-based information increase as we expand the dimensionality (and along with it, the sparsity)

of the text. In a related analysis, we show that text of The Wall Street Journal is valuable for

nowcasting macroeconomic series, which are released at a lower frequency and with a delay relative

to news text.

This paper contributes to a rapidly growing literature that incorporates insights from machine

learning into econometrics. Recent work applies prediction algorithms in policy analysis (Kleinberg,

Ludwig, Mullainathan, and Obermeyer, 2015; Bajari, Nekipelov, Ryan, and Yang, 2015; Athey,

2017; Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan, 2017; Ludwig, Mullainathan,

and Spiess, 2017; Einav, Finkelstein, Mullainathan, and Obermeyer, 2018) and considers parameter

uncertainty and causal inference in high dimensional settings (Belloni, Chen, Chernozhukov, and

Hansen, 2012; Belloni, Chernozhukov, and Hansen, 2014; Belloni, Chernozhukov, Fernández-Val,

and Hansen, 2017; Mullainathan and Spiess, 2017; Athey, Imbens, Pham, and Wager, 2017; Athey,

Tibshirani, and Wager, 2019). Our model allows economists interested in analyzing counts data like

text, to model selection in the process that generates their data in a flexible, robust and scalable

way. We show that the gains from adding structure that is well-grounded in economic theory can

substantially improve prediction in high dimensional applications.5

5See Athey (2018) for a recent survey and Hoberg and Phillips (2016); Hanley and Hoberg (2019); Jiang, Lee,
Martin, and Zhou (2019) for recent text analysis applications. We also provide new tools for summarizing high
dimensional coverage to a literature studying the media in economics (Gentzkow and Shapiro, 2006; Qin, Strömberg,
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Our technology is publicly available via the HurdleDMR package for Julia, which can be called

from many other programming languages like Python and R. The package allows for computa-

tionally efficient distributed estimation of the multiple hurdles over parallel processes, generating

sufficient reduction projections, and inverse regressions with selected text. It allows for elastic net

type convex combinations of L1 (Lasso) and L2 (Ridge) regularization as in glmnet (Friedman,

Hastie, and Tibshirani, 2010), and for concave regularization paths as in gamlr (Taddy, 2017).

We start Section 2 by presenting the intensive margin of our text selection model. Here we follow

the distributed multinomial regression (DMR) model of Taddy (2015). Section 2.1 introduces our

main contribution, a model for the extensive margin, which we refer to as Hurdle DMR. Section

2.2 shows how regularization allows our methodology to handle a feature space many times larger

the number of observations. Section 2.3 describes how to recover low dimension text indices that

track variables of interest. Section 2.4 shows how to use these indices for prediction, and establishes

that they are sufficient statistics for the information content of non-text covariates. We end the

paper with two applications of our methodology using text of The Wall Street Journal. In Section

3 we backcast the intermediary capital ratio and analyze its historical asset pricing properties. In

Section 4 we forecast and nowcast a variety of measures of macroeconomic activity.

2 A model for text selection

Let ci be a vector of counts in d categories for observation i, summing to mi =
∑
j cij , and let

vi be a pv-vector of covariates associated with each observation i = 1 . . . n. In a text application,

cij are counts of word or phrase (n-gram) j in document i with attributes vi.6 An econometrician

confronted with modeling counts data may first consider using a multinomial logistic regression:

p (ci|vi,mi) = MN (ci; qi,mi) for i = 1 . . . n, (1)

qij = eηij∑d
k=1 e

ηik
for j = 1 . . . d, (2)

ηij = αj + v′iϕj . (3)

and Wu, 2018; Durante and Zhuravskaya, 2018) and finance (Antweiler and Frank, 2004; Tetlock, 2007; Fang and
Peress, 2009; Engelberg and Parsons, 2010; García, 2013).

6For example, in the context of a finance application, vi could be the stock market response to a earnings release
or the subsequent stock market volatility.
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When the number of categories d is very large, as is the case in many natural language processing

applications, estimating the parameters of the multinomial, α = [αj ] and ϕ = [ϕij ], is computa-

tionally prohibitive.7 Equation (2), which makes sure that word probabilities qij add up to one,

is the main barrier to parallelization across categories because every parameter change must be

communicated to all other category estimators.

It is well known that the multinomial can be decomposed into independent poissons conditional

on the intensities eηij , scaled by a poisson for total word counts mi,

MN (ci; qi,mi) =
∏
j Po (cij ; eηij )

Po
(
mi;

∑d
j=1 e

ηij
) . (4)

Motivated by this decomposition, Taddy (2015) develops the distributed multinomial regression

(DMR), a parallel (independent) poisson plug-in approximation to the multinomial,

p (ci|vi,mi) = MN (ci; qi,mi) ≈
∏
j

Po (cij ;mie
ηij ) . (5)

The parameters for each category j can then be estimated independently with negative log likelihood

l
(
αj ,ϕj |cj ,v

)
=

n∑
i=1

[
mie

αj+v′iϕj − cij
(
αj + v′iϕj

)]
. (6)

Intuitively, each independent poisson intensity λij = mie
αj+v′iϕj is shifted to account for the fact

that all words are more likely to appear in longer (high mi) documents. Approximation (5) re-

moves the communication bottleneck of recomputing
∑d
j=1 e

αj+v′iϕj and allows for fast and scalable

distributed estimation.

Taddy (2013, 2015) uses the DMR to estimate a low dimensional sufficient reduction projection

zi = ϕ̂′ci

and shows that vi is independent of ci conditional on zi. This means that, within this model,

zi is a sufficient statistic that summarizes all of the content that the text has for predicting the
7For example, our application in Section A.2 has a vocabulary of more than five hundred thousand phrases, i.e.

d > 500, 000.
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covariatesvi (or its individual elements). For example, suppose viy is the first element of vi, which

is available in a subsample, but needs to be predicted for other subsamples. The first step would be

to run a multinomial inverse regression of word counts on the covariates v in the training sample

to estimate ϕ̂. Second, estimate a forward regression (linear or higher order)

E [viy] = β0 + [ziy,vi,−y,mi]′ β (7)

where ziy =
∑
j ϕ̂jycij is the projection of phrase counts in the direction of viy. Finally, the forward

regression can be used to predict viy using text and the remaining covariates vi,−y.

2.1 Hurdle distributed multinomial regression

In many cases, and specifically in text applications, the poisson is a poor description of word

counts cij . For example, Figure 1 shows the mean histogram (across documents) for the corpus

we use below, which consists of 10,000 two-word phrases (bigrams) appearing in the title and lead

paragraph of front page Wall Street Journal articles. The left panel shows a substantial mass point

at zero that is hard to reconcile with a poisson. The panel on the right shows that if we restrict

attention to positive counts, a (truncated) poisson is a reasonable approximation for the data. In

our experience, this sparsity is a feature of many text samples, which is why most text analysis

software packages use sparse matrices to store word counts efficiently. As alluded to above, the

economics of natural language selection provides many reasons for this sparsity. Furthermore, the

economics of content selection suggests that relationship between covariates and text will also be

better captured by allowing for a separate extensive margin effect– e.g. the decision to start writing

about a topic is likely to have more information than writing more about a topic.

To model text selection, we replace the independent poissons with a two part hurdle model for
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counts cij , which we label the hurdle distributed multinomial regression (HDMR):

h∗ij = γi + κj +w′iδj + υij , (8)

hij = 1
(
h∗ij > 0

)
, (9)

c∗ij = λ
(
µi + αj + v′iϕj

)
+ εij , (10)

cij =
(
1 + c∗ij

)
hij . (11)

The first two equations describe the choice to include (hij = 1) or exclude (hij = 0) word j in

document i, often referred to as the model for zeros or participation. This choice depends on

observable covariates wi ∈ Rpw and an unobservable υij . Equation (10) is the model for word

repetition given inclusion in the document, which can depend on the same or other covariates

vi ∈ Rpv and an unobservable εij . The last equation says that we only observe positive counts for

included words.8

Let Π0 denote the discrete density for zeros

p (hij = 0|wi) = Π0
(
γi + κj +w′iδj

)
.

Natural choices for Π0 are the probit and logit binary choice models. Let P+ denote the model for

word repetition, so that conditional on inclusion,

p
(
c∗ij |vi, hij = 1

)
= P+

(
c∗ij ;λ

(
µi + αj + v′iϕj

))
.

Natural choices for P+ are the poisson and the negative binomial. Combining terms, the joint

density is

p (cij |vi,wi) =
[
Π0
(
γi + κj +w′iδj

)]1−hij {[1−Π0
(
γi + κj +w′iδj

)]
P+

(
cij − 1;λ

(
µi + αj + v′iϕj

))}hij
(12)

8Our two part model is simpler and faster to estimate than Mullahy (1986)’s hurdle, which models positive counts
as drawn from a truncated poisson, as opposed to a regular poisson for counts in excess of one (repetitions). In a
previous draft we used the truncated poisson and found very similar results.
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The negative log likelihood takes a convenient form

l (µ,α,ϕ,γ,κ, δ|c,v,w) =
d∑
j=1

l (µi, αj , ϕj , γi, κj , δj |cj ,v,w) , (13)

l (µi, αj , ϕj , γi, κj , δj |cj ,v,w) = l0 (γi, κj , δj |hj ,w) + l+
(
µi, αj ,ϕj |cj ,v

)
, (14)

l0 (γi, κj , δj |hj ,w) = −
n∑

i|hij=0
log Π0

(
γi + κj +w′iδj

)
−

n∑
i|hij=1

log
[
1−Π0

(
γi + κj +w′iδj

)]
, (15)

l+
(
µi, αj ,ϕj |cj ,v

)
= −

n∑
i|hij=1

logP+
(
cij − 1;λ

(
µi + αj + v′iϕj

))
. (16)

Note that the coefficients γi and µi introduce dependence across the log likelihood of different words

j. To allow for separation across words, and parallelization of the estimation stage, we adapt the

argument in Taddy (2015) and use plug in estimatorsγ̂i and µ̂i that approximate the maximum

likelihood estimators under certain conditions. We discuss these plug in estimators in Section 2.3

and in Appendix B.

A useful feature of the hurdle is that exclusion (hij = 0) is the only source of zero counts. As a

result, it decomposes as in (14) into two parts that can be estimated independently, which facilitates

further parallelization.9 Specifically, the parameters that govern inclusion (κj , δj) only depend on

word j indicators hj and on the covariates w, whereas the parameters that govern repetition (αj ,

ϕj) only depend on word repetition cj−1 > 0 and the covariates v and can be estimated separately

in the subsample of with word repetition.

HDMR therefore allows one to estimate text selection in Big Data applications of previously

impossible scale, by distributing computation across categories and across the two parts of the

selection model.

2.2 Regularization

In many machine learning applications, the feature space (words) is much larger than the number

of observations. In such cases, regularization by penalizing nonzero or large ϕ and δ coefficients is

key to avoid overfit. Our results use L1 regularization separately for each category j and for each
9Zero inflation models are alternative approaches that allow for latent c∗ij = 0, in which case zero count observations

could result either from exclusion or from inclusion of zero counts. While this distinction is philosophically interesting,
the hurdle is more tractable and faster to estimate.
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of the two parts of the hurdle

κ̂j , δ̂j = arg min
κj ,δj

l0 (γ̂i, κj , δj |hj ,w) + nλ0
pw∑
k=1
|δjk| where λ0 ≥ 0, (17)

α̂j , ϕ̂j = arg min
αj ,ϕj

l+
(
µ̂i, αj ,ϕj |cj ,v

)
+ n+λ+

pv∑
k=1
|ϕjk| where λ+ ≥ 0. (18)

The penalties λ0 and λ+ shrink the loadings toward zero, and because of the Lasso-type L1

penalties, result in many zero loadings (Tibshirani, 1996).10 Because the model for positive counts

only depends on documents i that include word j, the penalty is normalized by the number of such

documents n+ ≡
∑n
i=1 hij . Fast coordinate descent algorithms for these minimization problems

have been proposed by Friedman, Hastie, and Tibshirani (2010), which trace out regularization

paths of solutions, one for each of a grid of λ′s, for the class of generalized linear models (GLM,

McCullagh and Nelder, 1989). We follow Taddy (2017) in selecting the model that minimizes a

corrected AIC, though in relatively modest applications one could use cross validation to select the

optimal penalty. To apply the coordinate descent algorithms developed by Friedman, Hastie, and

Tibshirani (2010) to our selection model, we frame its two parts as GLMs: a binomial-logit for the

inclusion part and a poisson-log for the repetition part (McCullagh and Nelder, 1989).

2.3 Sufficient reduction projections

For simplicity, in what follows we focus on the case where hij is binomial (bernoulli) distributed

p (hij |wi) =
[
Π0
(
γ̂i + κj +w′iδj

)]1−hij [1−Π0
(
γ̂i + κj +w′iδj

)]hij (19)

with a logit link,

log ((1−Π0) /Π0) = κj +w′iδj + γ̂i. (20)

In this case we can show that for a large enough number of categories d, the MLE estimator for γi

converges to log
(

di
d−di

)
, where di =

∑d
j=1 hij is the number of categories used in document i. We

therefore use γ̂i = log
(

di
d−di

)
as our plug in estimator. See Appendix B for details.

10We focus on Lasso penalties here to simplify the exposition. Our HurdleDMR package allows for more general
elastic net-type regularization as in glmnet (Friedman, Hastie, and Tibshirani, 2010), and for concave regularization
paths as in gamlr (Taddy, 2017).
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The distribution of word repetitions c∗ij is assumed to be poisson,

P+
(
c∗ij ;λij

)
= Po (cij − 1;λij) = λ

cij−1
ij e−λij , (21)

with log intensity

log λij = αj + v′iϕj + µ̂i. (22)

Here we follow Taddy (2015) and use µ̂i = log(mi−di) as our plug in estimator. The only difference

from Taddy (2015) is that here we are modeling word repetition so the estimator is log(mi − di)

instead of log(mi). See Appendix B for details.

In the Appendix, we show how to estimate both parts of the hurdle as a GLM, which allows us

to use fast coordinate descent algorithms for regularized estimation as in glmnet.

We next show that under these functional forms, the entire empirical content of the text that is

useful for predicting a variable in w or v, is summarized by two low dimension sufficient statistics.

Result 1. Assuming a binomial-logit model for inclusion and a poisson-log model for word repeti-

tion, the projection δhi is a sufficient statistic for wi and the projection ϕci is a sufficient statistic

for vi, conditional on total counts mi and vocabulary di. Specifically,

vi,wi ⊥⊥ hi, ci|δhi,ϕci,mi, di.

Proof. That ϕ(ci−1) is a sufficient statistic for vi follows immediately from the DMR case discussed

in Section 2. To establish sufficiency of δhi, note that the likelihood for counts ci given observed

covariates vi and wi can be factored into

p (ci|vi,wi) = p (hi ◦ ci|vi,wi) = φ(ci)ψ(hi)a(wi, di)b(vi,mi, di) exp(w′iδhi + ϕvi(ci − hi)), (23)

where

ψ (hi) =
d∏
j=1

e
(
log
(

di
d−di

)
+κj
)
hij ,

φ (ci) =
d∏

j|hij=1
exp ((cij − 1) (log (mi − di) + αj)− log ((cij − 1)!)) ,
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a (wi,mi) =
d∏
j=1

1

1 + e
log
(

di
d−di

)
+κj+w′iδj

,

b (vi,mi) =
d∏

j|hij=1
exp

(
−(mi − di)eαj+ϕ

′
jvi
)
,

and we use the fact that the Hadamard product hi ◦ ci is equivalent to ci here. Hence, the usual

sufficiency factorization (e.g., Schervish, 1995, Theorem 2.21) applies yielding the stated result. See

Appendix C for additional details.

Result 1 means that once we estimate the HDMR parameters, we can reduce the high-dimension

(d) text into low-dimension (pv+pw) sentiment scores from the text in the direction of the covariates

in v or w. The projections provide useful summaries of the text, which can be plotted or used as a

dimensionality reduction first-step into a more elaborate analysis. As in Taddy (2015), the sufficient

statistics δhi and ϕci rely on population parameters, but in practice we use plug-in estimators δ̂hi

and ϕ̂ci. Whether these provide useful approximations is a setting-dependent empirical matter.

2.4 Inverse regression for prediction

The end goal of many machine learning or natural language processing applications is out-of-sample

prediction. Result 1 provides a guide to supervised learning from text via an inverse regression

of the text on the target variable and other covariates Taddy (2013). The parameters from the

HDMR inverse regression in the training sample are used to form a bivariate sufficient reduction

projection of the text. A forward regression (still in the training sample) of the target variable on

these projections plus the other covariates is then used to construct the predictor.

More concretely, suppose the target variable viy = wiy is an element of both vi and wi. We

first construct two univariate sufficient reduction projections z0
iy = δyhiy and z+

iy = ϕyciy. Be-

cause the estimated loadings δy and ϕy are partial effects, controlling for the other covariates,

wi,−y and vi,−y, the projections z0
iy and z+

iy correspond to partial associations as well. Conditional

on the parameters, z0
iy contains all the information that is useful for predicting viy from the selection

of words used in the text (the extensive margin). Similarly, z+
iy contains the incremental predictive

information in repeating words within document i (the intensive margin). Intuitively, HDMR can

learn separately from both the extensive and intensive margins, and use them for more efficient
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prediction. We would then estimate a forward regression (linear or higher order)

E [viy] = β0 +
[
z0
iy, z

+
iy,wi,−y,vi,−y,mi, di

]′
β (24)

which can be used to predict viy using text and the remaining covariates wi,−y and vi,−y. In the

case that the target variable is only an element of w (v), one would only use z0
iy (z+

iy) in the forward

regression.

3 Application I: Backcasting the intermediary capital ratio

A rapidly growing body of work finds empirical support for intermediary asset pricing theories

(He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Adrian, Etula, and Muir, 2014;

Haddad and Muir, 2018; Baron and Muir, 2018; He and Krishnamurthy, 2018; Koijen and Yogo,

2019). In particular He, Kelly, and Manela (2017) find that a simple two-factor model that in-

cludes the excess stock market return and the aggregate capital ratio of major financial interme-

diaries—primary dealers—can explain cross-sectional variation in expected returns across a wide

array of asset classes. They also present preliminary results on return predictability (time-series

regressions), but their conclusions are limited by a relatively short time-series that starts in 1970.

Prior to 1970, most primary dealers were private, which precludes a calculation of their capital

ratio.

We conjecture that as a publication catering to investors, text that appears on the front page

of the Wall Street Journal would be informative about the aggregate state of the intermediary

sector. Dire language on financial intermediaries’ failure is used to cover unfolding crises like the

financial crisis of 2008, the LTCM liquidity crisis following Russia’s default in 1998, and the failure

of important dealers like Drexel Burnham Lambert in 1990.

3.1 Data

Our text data includes all titles and lead paragraphs that appear on the front page of the Wall

Street Journal from July 1926 to February 2016. We include the 10,000 most frequent two-word

phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters and Porter
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stemming. We aggregate the data to the monthly frequency so that ct are phrase counts observed

during month t.

Figure 1 shows the mean histogram for phrase counts in this sample. The left panel shows that

the entire range is highly sparse (has many zeros). The right panel omits zero counts, and shows

that a truncated (at zero) poisson distribution is a reasonable approximation for the positive

range of counts.

We match this data with the monthly intermediary capital ratio icrt of He, Kelly, and Manela

(2017).11 This ratio is our prediction target and is therefore the first element of both covariate

vectors vt and wt. We additionally include in both, two natural covariates that are likely to be

correlated with the icrt: the log price dividend ratio (pdt) from CRSP, and the realized variance of

financial stocks (rvfin) over the same month and the prior one. Table 1 reports summary statistics

for these variables.

3.2 Newspaper coverage choice

Our selection model is parametrically identified and therefore technically does not require that

different variables be used in the inclusion and repetition equation. However, Heckman (1979)

selection models are known to be nonparametrically identified if a continuous variable enters the

selection equation but can be excluded from the second equation (Gallant and Nychka, 1987;

Heckman and MaCurdy, 1986). Proving such a result in our setting can be useful, but left for

future work. Motivated by their insight, we seek an instrument for word inclusion.

Boydstun (2013) suggests that prior attention to an issue may influence its coverage by the press.

The idea is that once fixed costs such as journalist travel and familiarization with an issue have

been incurred, a marginal article is easier to produce. To capture prior attention to the financial

sector, we add prior year realized variance of financial stocks (rvfint−13→t−1) as an explanatory

variable in the model for inclusion alone, excluding it from the repetition equation. This choice

assumes that after conditioning on the intermediary capital ratio, the price-dividend ratio, current

and lagged monthly rvfin, and on phrase j being included in the Journal, the number of times
11The icr is available at http://apps.olin.wustl.edu/faculty/manela/data.html
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this phrase is repeated does not depend on the prior year’s volatility of financial stocks.12

3.3 Sparsity and out-of-sample fit

A key choice in the preprocessing stage of many text analyses, is to omit words or phrases that

rarely appear in the sample. For example, we may keep the X most frequent phrases. From

the vantage point of our selection model, this choice is important. If the “cleansed” word counts

matrix c is highly dense because phrases that often do not appear in the text are excluded from

the analysis, then the benefit of modeling the extensive margin is likely to be low. Therefore, we

assess the improvement in out-of-sample fit as a function of the number of most frequent phrases

kept in the sample.

Figure 2 compares the out-of-sample root mean squared error from a 10-fold cross validation

exercise. It compares HDMR with DMR, which is provided with the same covariates and text,

and with a linear regression of the target on the same covariates but without the text. Both

DMR and HDMR improve considerably over the No Text benchmark and reduce the error by 46

percent (from 1.3 to 0.7 percentage points). We can see that when only a few hundred words

are considered in vocabulary, both DMR and HDMR generate similar improvements, but as rarer

phrases are included in the vocabulary, selection plays a bigger role, and the benefit from using

HDMR increases. The advantage is hump-shaped, and eventually, as rarely-used phrases enter, the

out-of-sample fit of both text models suffers.

Because our prediction exercise involves using data in one time period to predict out-of-sample

in a different time, cross-validation with random folds may be misleading when both the text and

target variable are persistent. For example, if the model relies heavily on the fact that the phrase

“subprime mortgage” appears often in the period around the 2008 financial crisis when intermediary

capital was low, but not in earlier parts of the sample, then random cross-validation, which would

likely include observations around the same period in the test subsamples, may give an overly

optimistic measure of out-of-sample fit.

Figure 3, therefore, uses pseudo out-of-sample prediction, starting with the latter half of the

sample and rolling back with wider training subsamples, predicting one observation at a time. Even
12We have experimented with business news pressure (Manela, 2014), a variant of television news pressure (Eisensee

and Stromberg, 2007), that is available for a shorter sample starting 1967, and found similar out-of-sample fit
improvements.
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though this validation approach results in somewhat wider confidence intervals, the results are quite

similar to random cross-validation. Table 2 focuses on the optimal model by cross-validation, the

one that uses the 10,000 most frequent phrases. We find that regardless of the validation method,

HDMR provides a significant reduction in out-of-sample root-mean-squared-error.

3.4 News-implied intermediary capital ratio, 1927–2016

Having established that our model produces good out-of-sample fit, we use it to backcast the

intermediary capital ratio back to the June 1927, the first month when a full year of financial

volatility is available. Figure 4a shows that the intermediary capital ratio predicted by HDMR

closely follows the actual one in the period when the latter is available, 1970–2016. Financial

variance and the price-dividend ratio, which alone can explain much of the variation in the icr,

provide a back-bone for the predictor, as can be seen from the No Text benchmark. DMR, HDMR,

and SVR, all use these covariates plus the text to improve prediction, but generate somewhat

different time-series. For example, the HDMR predicted values appear lower than those of DMR

and feature more negative spikes in the capital ratio. The SVR predictor makes clear that it does

not find the variation in rvfin and pd important.

Figure 4b zooms in on the Great Depression period. With the exception of the SVR predicted

series, all predictors indicate that financial intermediaries were substantially undercapitalized be-

tween 1929 and 1939. Figure 4c shows a similar pattern, for the more recent Great Recession

period, with all predictors showing a sharp fall in the aggregate capital ratio of financial interme-

diaries, that matches the actual icr’s behavior. Interestingly, financial variables without the text

overstate the recovery of the icr starting in 2010. Compared with HDMR, DMR understates the

icr’s recovery between 2012 and 2013. To better understand the source of this difference, we next

focus on individual phrases and their importance.

3.5 Which phrases are pivotal for out-of-sample fit?

To better understand the improvements in out-of-sample fit that HDMR generates, we report in

Table 3 the phrases whose removal from the corpus causes the largest deterioration in out-of-sample

root-mean-squared-error.13 We report results separately for the two validation methods discussed
13Gentzkow, Shapiro, and Taddy (2019) identify partisan phrases with a similar approach.

17



earlier in Section 3.3 because our intuition is that time-series persistence can lead to overstatement

of out-of-sample fit using random cross-validation.

A related concern is that language changes over time, so the phrases associated with movements

in the icr in the fitted sample, are not useful its prediction in the earlier, 1926–1969 period. For

example, subprime mortgage is unlikely to relate to appear in the Wall Street Journal prior to

the 2007–2009 financial crisis. But the important question for our purposes is whether HDMR can

avoid overfitting to such phrases. Manela and Moreira (2017, Section 2.3) analyze this possibility

in detail for the same corpus and a different financial variable as target. They find that while

language does change over time, the deterioration it induces in out-of-sample fit is quite modest,

even when backcasting farther to 1890. Examining the list of pivotal phrases can shed light on this

issue.

Table 3, Panel (a) shows that some of the predictive ability of the text comes phrases, such as

the the positively associated jobless marri capture fairly robust economic fundamentals. Other

phrases such as barack obama, a US president elected at the peak of the 2008 financial crisis,

show up as negatively correlated with the icr, even though they are unlikely to be useful for its

prediction before 2008. Interestingly, his main opponent during the 2012 election, mitt romney,

is negatively associated too, suggesting that political uncertainty as opposed to specific policies may

be the culprit (Pastor and Veronesi, 2012; Baker, Bloom, and Davis, 2016; Manela and Moreira,

2017; Hassan, Hollander, van Lent, and Tahoun, 2017).

Panel (b) uses pseudo out-of-sample rolling validation instead, and shows as conjectured, greater

focus on robust fundamentals that are likely to be relevant over the entire sample. Pivotal phrases

have to do with government policy (tax report, washington wire) and economic conditions (busi

bulletin, labor letter). We therefore find this validation approach more likely to approximate

true out-of-sample fit.

3.6 Focusing on a single phrase for intuition

For a better intuitive understanding of how inverse regression loadings translate into forward re-

gression prediction, we next focus on a single phrase, financi crisi. We expect front page reports

of financial crises to be a negative signal about the capital ratio of the intermediary sector.

The backward hurdle regression estimates in the first two columns of Table 4a show that the

18



icr is indeed negatively correlated with repeated mentions of financi crisi, but also that the

mere inclusion of this phrase on the front page is a strong negative signal, conditional on the price-

dividend ratio and financial volatility. The positive coefficient on rvfint−13→t−1 means that above

average prior year financial volatility is followed by higher financial crisis coverage on the front page.

Specifically, a one standard deviation in this instrument relative to its mean implies a 22% increase

in the log odds ratio for a financial crisis inclusion (from 0.17 to 0.21). The last column shows

that a poisson regression (DMR) treats inclusion and repetition as a single object, and assigns a

relatively low weight to this instrument compared to contemporaneous financial volatility (both

variables are in annual variance units).

These coefficients are used to construct the two sufficient reduction projections, z0
ty = δyhty

and z+
ty = ϕycty, and plugged into a forward regression of the icr on the these and the remaining

covariates, as described in Section 2.4:

yt = b0 + bzz
+
ty + bsz

0
ty + bvvt,−y + bmmt + bddt + εt.

The contribution of a single phrase j to the predicted value is therefore

ŷtj = bzϕjy (ctj/mt) + bsδjy (htj/mt) .

Table 4b reports the forward regression coefficients’ products with those of the backward regression,

bzϕjy and bsδjy for HDMR, and contrasts it with the corresponding single coefficient product of

DMR. We can see that much of the contribution of financi crisi to the predicted value in HDMR

comes from the extensive margin. A different way to see this is by looking at the time series ŷtj ,

which appears in Figure 5. A single mention of financial crises is all it takes for HDMR to predict

a lower intermediary capital, with repeated mentions having a much lower effect.

3.7 Time-varying risk premia and the intermediary capital ratio

A central prediction of the intermediary asset pricing model (He and Krishnamurthy, 2012, 2013)

is that times when intermediaries are highly capitalized are “good times,” when these marginal

investors demand a relatively low risk premium to hold investment assets. Preliminary such time-
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series predictability regression reported in He, Kelly, and Manela (2017) support this prediction,

but the short time-series used there limits the power of these tests.

The news-implied intermediary capital ratio allows us to test this prediction in a larger sample

that goes back to 1927. Return predictability tests are reported in Table 5 for the monthly,

quarterly and annual horizons. Because such regressions use overlapping observations, we use the

standard Hodrick (1992) correction to the standard errors. For each horizon, the first column show

that restricting attention to the actual icr, which is available only starting 1970, yields a negative

but statistically insignificant coefficient. By contrast, we find that the news-implied îcr, which is

available over a much longer period, is significantly negative both over the postwar sample and the

full sample. The point estimates are fairly consistent across horizons and subsamples and imply

that a one standard deviation increase in the icr predicts a 4–5 percentage points lower market

premium.

To understand better whether the predictive ability comes from covariates that are known pre-

dictors like price-dividend ratio or from the text, we regress future stock market excess returns at

various horizons on lagged sufficient reduction projections z0
t−1, z+

t−1, and the covariates. We find

that the inclusion projection z0
t−1 is a strong predictor of future market returns in the postwar sam-

ple, over and above the price-dividend ratio, and that the repetition projection z+
t−1 is statistically

significant only in the full sample.

The results imply that there is a set of phrases whose inclusion on the front page of the Journal

provides a strong signal about stock market risk premia, over and above the valuation ratio (pd).

HDMR provides an efficient way to identify these phrases and their relative weights in a data driven

approach while avoiding overfit.

4 Application II: Forecasting key macroeconomic indicators

Stock and Watson (2012) compare forecasts from various forecasting methods designed for a large

number of orthogonal predictors with dynamic factor model (DFM) forecasts using a U.S. macroe-

conomic dataset with 143 quarterly variables spanning 1960–2008. They find that for most series,

DFM-5 forecasts, which are based on a simple linear regression of the target on the top 5 principal

components of the lagged variables, are superior to shrinkage forecasts. A large literature has ex-
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plored ways of improving on their results (e.g. Stock and Watson, 2011, 2016; Kim and Swanson,

2014; Kelly and Pruitt, 2013, 2015; Bitto and Frühwirth-Schnatter, 2018; Chudik, Kapetanios, and

Pesaran, 2018; Boot and Nibbering, 2019; Cepni, Güney, and Swanson, 2019).

Our question is different. We ask whether the text that appears in the Wall Street Journal

contains additional information that is useful for forecasting these macroeconomic indicators beyond

that of the DFM-5 benchmark, and whether HDMR can extract such information from the text.

4.1 Data

Because we are interested in forecasting, we focus on more recent data for which we have a much

richer body of text—the full text of all Wall Street Journal articles that appear on the front page

of the from January 1990 to December 2010. We include two-word phrases (bigrams) in separate

sentences, after removing case, stopwords, nonletters and Porter stemming, and aggregate the data

to the monthly frequency so that ct are phrase counts observed during month t.

Figure 6 shows the mean histogram for phrase counts in this sample. It shows that the mean

distribution of phrase counts is now much less concentrated at zero, even when we include the top

100,000 most frequent phrases. Note that some individual phrases still exhibit many more zeros

than implied by a poisson.

We match the text with the monthly macroeconomic indicators dataset made available for

replication by Stock and Watson (2012). Following their categorization and normalization, while

restricting the analysis to monthly series, we use 92 lower-level disaggregated series to compute prin-

cipal components, and use 12 headline indicators as prediction targets. Table 6 reports summary

statistics for these target variables.

4.2 Methods

We compare the out-of-sample root mean squared error for HDMR against the DFM-5 benchmark

and against DMR with the same data. We assess out-of-sample fit via (i) random cross-validation

and via (ii) pseudo out-of-sample rolling forward predictions (starting with half the available time-

series as training sample and forecasting one month ahead). The latter approach is especially ap-

pealing given recent evidence of time-varying predictability (Farmer, Schmidt, and Timmermann,
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2019).

Let Y τ
t+τ denote the variable to be forecasted in a τ -period ahead forecast Y τ

t+τ . In each training

sample (fold) we use the following methods for fitting.

For DFM-5, we simply form principal components of the entire sample once, and keep the top

5. We expect this to give DFM-5 a slight advantage over the competing methods. We then run an

ordinary least squares regression of the target on the PCs:

Y τ
t+τ = β0 +

[
pc1
t , . . . , pc

5
t

]′
β + εt+τ (25)

For HDMR, we use these same 5 PCs as well as the target as explanatory variables in inverse

regressions (8) and (10). We then form sufficient reduction projections in the direction of the

target. These projections summarize all the information in the text from phrase inclusion (z0
tY )

and repetition (z+
tY ) that is useful for predicting the target Y τ

t+τ after controlling for the PCs. We

then run a forward regression (24) of the target on the sufficient reduction projections and the PCs,

still using only training sample data:

Y τ
t+τ = β0 +

[
z0
tY , z

+
tY , pc

1
t , . . . , pc

5
t ,mi, di

]′
β + εt+τ (26)

For DMR, we follow essentially the same procedure as for HDMR, with the same variables used

to explain the text, and use its single sufficient reduction projection in the forward regression.

For each of the three models we use the predicted values from the forward regression, but

applied to out-of-sample validation observations.

4.3 Forecasting results

Table 7 reports out-of-sample RMSE for HDMR, relative to DFM-5, which uses only the PCs

without the text, and relative to DMR with the same data. Lower reported ratios indicate larger

improvements from using HDMR. We find significant improvements in out-of-sample forecasts for

a few variables at the monthly horizon (τ = 1). For example, in Panel (a), total nonfarm payroll

employment sees a 17% (18%) improvement from using HDMR relative to DFM-5 and housing

starts sees a 32% (31%) improvement using random cross validation (rolling validation).
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We find that the text appearing in the Journal is more informative about longer horizons,

where HDMR generates significant improvements in most forecasts. For example, using the text

improves industrial production and employment forecasts by about 20–30% at the annual horizon

(τ = 12). Newspaper coverage also considerably improves asset pricing forecasts at this longer

horizon, generating large reductions in RMSE for interest rates, exchange rates, and stocks.

We further find that the advantage of HDMR over DMR increases as we increase the dimension-

ality of the text and use less frequent and more sparse phrases. Because of the computational cost

of this exercise, we simply compare a restricted sample with the most frequent 10,000 phrases in

Panel (a) with a larger vocabulary of the most frequent 100,000 phrases in Panel (b). We find, for

example, that even though the quarterly inflation (CPI-ALL) forecasts of HDMR are comparable

to those of DMR when we use 10,000 phrases, they are substantially better when we use 100,000

phrases. Similar improvements can be seen for M1 and consumer expectations. These findings

suggest that HDMR can better learn from high dimensional sparse data like business newspaper

coverage, which is selected based on newsworthiness.

4.4 Nowcasting results

Nowcasting is a related but distinct strand of the forecasting literature, which focuses on predicting

activity that occurs now but that will only be reported later. A growing body of work starting

with Giannone, Reichlin, and Small (2008) and surveyed in Bańbura, Giannone, Modugno, and

Reichlin (2013) compares different methods for nowcasting macroeconomic indicators using lagged

and contemporaneous macroeconmic series that is available before the actual measurements are

released publicly.

We can evaluate whether the text of the Journal is informative about the present, by lagging

one month both the target and the PCs so that the predictive forward regression becomes

Y τ
t−1+τ = β0 +

[
z0
tY , z

+
tY , pc

1
t−1, . . . , pc

5
t−1

]′
β + εt−1+τ . (27)

We then follow the same out-of-sample validation procedure of the forecasting exercise. But now,

the question we ask is whether the text of the Journal that is reported over month t is informative

about macroeconomic activity over the same month Y 1
t , or starting in the same month, over and
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above the information in month t−1 macroeconomic indicators that are publicly available by month

t.

Table 8 shows that this body of text, and our approach to learning from it in particular, are

highly valuable for nowcasting. The improvements in out-of-sample fit are mostly greater than in

the forecasting exercise of Table 7. These suggest that nowcasting with text may offer substantial

gains over using macroeconmic series alone. We leave that question for future research, as well as

whether our methods can improve upon state-of-the-art nowcasting models that use several factor

lags, daily data, or mixed frequency VAR, and that deal with the jagged edge of macroeconomic

news in realtime.

5 Conclusion

Text data is inherently high-dimensional, which makes machine learning regularization techniques

natural tools for its analysis. Text is often selected by journalists, speechwriters, and others who

cater to an audience with limited attention.

We develop an economically-motivated high dimensional selection model that can improve ma-

chine learning from text in particular and from sparse counts data more generally. Our highly

scalable approach to modeling coverage selection is especially useful in cases where the cover/no-

cover choice is separate or more interesting than the coverage quantity choice.

We apply this framework to backcast a central financial variable to historical periods using

newspaper coverage, and to nowcast and forecast key macroeconomic indicators. We find that it

substantially improves out-of-sample fit relative to alternative state-of-the-art approaches, and that

this advantage increases with the sparsity of the text.
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A Robustness

A.1 Alternative text regressions

Table 2a focuses on the optimal model by cross-validation, the one that uses the 10,000 most

frequent phrases and compares HDMR to several benchmarks. For each model we report the

measure of fit with and without the text, and the change in the measure of fit.

The first benchmark is DMR, which is provided with the same covariates and text. The im-

provement from modeling selection with HDMR is a 13 percent reduction in out-of-sample root

mean squared error, from 82 to 71 basis points. HDMR provides a 45 percent improvement relative

to the No Text benchmark that only uses the other covariates to predict.

The second benchmark model is a “fabricated” variant of HDMR (FHDMR) which adds hij =

1 (cij > 0) indicators to the text counts matrix c and then runs DMR as usual with c̃ = [c h]. If all

that HDMR was doing is allow for a nonlinearity of the counts matrix, we would expect FHDMR

to do just as well. Instead we find that it generates an 79 basis point RMSE, which is only slightly

better that the 82 bp of DMR.

The last benchmark we consider is support vector regression (SVR), which Manela and Moreira

(2017) use for a similar backcasting purpose. We follow their approach to calibrating the SVR

meta-parameters. Even though we standardize both text and covariates to unit variance, SVR

still cannot concentrate on the covariates, which provide first order information on our prediction

target. SVR with text improves on an SVR without text, but its 126 basis points error rate is much

larger than that of HDMR.

Table 2b reports pseudo-out-sample rolling back validation results, and finds similar improve-

ments in out-of-sample fit from using HDMR.

A.2 Denser text

For a shorter time-series, 1990 to 2010, we can assess HDMR with much denser text—the full Wall

Street Journal. Figure 7 shows that in this sample, the advantage from using the richer body of

text is larger, as it attains lower out-of-sample error rates. These results, however, could also be

driven by the different time period. What does seem like a robust conclusion from this comparison

is that the advantage of HDMR over DMR increases with the sparsity of the text, which is plotted
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in the bottom panel. With d = 500, 000 phrases, the counts matrix is just over 60 percent zeros,

and HDMR reduces out-of-sample root mean squared error by 58 percent (121 to 51 basis points)

relative to the No Text benchmark, and by 24 percent (68 to 51 bp) relative to DMR.

B What does HDMR approximate?

The method presented in this paper is developed with the goal of computational efficiency. With this

goal in mind we model the intensive margin of the word counts using a poisson distribution. Here

we show that our HDMR procedure can be thought as maximizing a likelihood that approximates

a mixture of d bernoulis and a multinomial. The bernoulis determine the extensive margin, i.e.,

whether a given word is used in a given document, and the multinomial determines the intensive

margin, i.e. how much a word is used in a given document.

Taddy (2015) shows that we can factorize a poisson distribution for the distribution of word

counts in a document as a poisson distribution for the total number of words in the document, and

a multinomial distribution for the count of each word given the todal word count:

p(ci) =
∏
j

Po(cij , eηij ) = MN(ci; qi,mi)Po(mi; Λi).

Furthermore, he shows that if ηij is of the form ηij = µi+αj +v′iϕj , and µi in the poisson model is

estimated at its conditional MLE, µ∗i = log

(
mi∑
j
eηij

)
, then the coefficients estimates ϕj and αj are

the same regardless of whether the distribution is conditioned on mi. This means that conditional

on µ∗i , estiamting the poisson model is equivalent to estimating the multinomial model.

However, choosing µ∗i = log

(
mi∑
j
eηij

)
is computationally costly because it makes the d poisson

models depend on each other, and therefore makes it impossible to parellize the model estimation

across words, which is essential to make it useful for any Big Data application. Taddy (2015) shows

particular cases where µ∗i degenerates to µ̂i = log(mi), and shows that in more general cases the

choice µ̂i generalizes well in out-of-sample validation.

We now apply this insight above to our setting and show what our hurdle model approximates.

We start from the mixture of d binomials for the extensive margin of each word, and a multinomial

distribution for the excess word counts of each word. We then show that we obtain the joint
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distribution associated with (12).

Lets start with the word count ci distribution conditional on word count totalsmi and document

vocabulary size di. Define hi = ci ≥ 1, where the inequality is evaluated word by word, so hi is

d by 1 vector of ones and zeros. Thus hi defines the vocabulary of document i as it identifies all

words used in the document. Note that 1′hi = di ≤ d, i.e., each document vocabulary is smaller

than the universal vocabulary. A document vocabulary is given by the mixture of d bernoullis

with success probabilities given by Πij for word j in document i. The bernoullis determine whether

hij = 0 or hij = 1,i.e., if word j is part of the used vocabulary in document i. This implies that the

expected vocabulary size is E[
∑d
j=1 hij ] =

∑d
j=1 Πij . This holds approximately for large enough

universal vocabulary d because each draw is independent , i.e., the law of large numers implies

E[
∑d
j=1 hij ] =

∑d
j=1 Πij ≈

∑d
j=1 hij = di.

We can then represent the binomial distribution as

p(hi) =
d∏
j=1

B(hij ,Πij)

with Πij = 1/(1 + e−γi−εij ), this implies the log-likelihood ratio is,

log

(
Πij

1−Πij

)
= log

(
1/(1 + e−γi−εij )

1− 1/(1 + e−γi−εij )

)
= log

(
1/(1 + e−γi−εij )

(e−γi−εij )/(1 + e−γi−εij )

)
= γi + εij ,

where γi captures document specific vocabulary richness, and εij capture the relative probability

of usage of word j in document i. So for example, a news paper that talks about very broad set

of topics will have large γi but εij are all close around zero. While a finance journal will perhaps

have a low γi but very disperse εij with some words being significantly more likely to be used and

other significantly less likely.

We now show that in similar spirit as Taddy (2015) we can use an approximation to motivate a

plug in estimator for γi, which is document specific, and in general would require all the words to

be jointly estimated. We start by doing a linear approximation of the probability Πij as function

of εij ,
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Πij = 1/(1 + e−γi−εij ) ≈ 1/(1 + e−γi) + 1/(1 + e−γi)2e−γiεij ,

we then add probabilities within document and across words,

d∑
j=1

Πij ≈
d∑
j=1

1/(1 + e−γi) +
d∑
j=1

1/(1 + e−γi)2e−γiεij

≈ d/(1 + e−γi) + 1/(1 + e−γi)2e−γi
d∑
j=1

εij

≈ d/(1 + e−γi),

where we use the the universal vocabulary is large and the the law of large numbers applies to get∑d
j=1 εij ≈ 0. Finally we use our earlier result that

∑d
j=1 Πij ≈ di to get

γ̂i = log

(
di

d− di

)
,

which is our plug-in estimator.

We then use a standard logit approximation and obtain the following log-likelihood ratios,

log

(
Πij

1−Πij

)
= γi + εij = log

(
di

d− di

)
+ εij = log

(
di

d− di

)
+ κj + w′iδj ,

where we model the word-document relative word usage εij as a function of a word specific compo-

nent κj that captures the fact that some words are just more likely to be used unconditionally, and

the term w′iδj which captures conditional variation in word usage as a function of our covariates

wi.

We descibed so far the joint distribution for the extensive margin of word usage. Now we

describe the the intensive margin, which we model with a multinomial. Specifically the multinomial

distribution describes the distribution of word repetitions. Define c∗ij = cij − hij , the vector of

repetitions, m∗i = mi−di the total amount of word repetitions in document i and q∗ij = hijqij∑d

j=1 hijqij
is

the share of word counts for word j in document i. Note that q∗ij = 0 if hij = 0 since this distribution

is conditional on the vocabulary hi.Then given the document vocabulary hi, the distribution of word
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counts is

p (c∗i |vi,m∗i , hi, di) = m∗i !∏d
j=1 c

∗
ij !

d∏
j=1

(
q∗ij

)c∗ij = MN (c∗i ; q∗i ,m∗i )

We now follow Taddy (2015) and factorize the joint distribution implied by several independent

poissons in terms of a multinomial distribution for the words counts and a poisson distribution for

the total word count, and get

MN
(
c∗ij ; q∗i ,m∗i

)
Po(m∗i ; Λi) =

∏
j|hij=1

Po(c∗ij ; eηij ), with ηij = αj + µi + ϕ′jvi,

where µi picks up a document specific tendency to repetition when they use any word, αj picks up a

word specific tendency to repetition when used in any document, and ϕ′jvi picks up the conditional

association between word repetition and the covariates vi.

Using Taddy (2015) proposed plug-in estimator for the poisson distribution of total word counts

µ̂i = log(m∗i ) = log(mi − di),we obtain that the multinomial distribution for word repetitions can

be represented by the product of independent poissons,

MN
(
c∗ij ; q∗i ,m∗i

)
≈

∏
j|hij=1

Po(c∗ij ;m∗i e
αj+ϕ′jvi.).

All together this implies our hurdle model that we bring to the data:

d∏
j=1

B(hij ,Πij)MN

(
cij − hij ;

hijqij∑d

j=1 hijqij
,mi − di

)
Po(mi−di; Λi) ≈

d∏
j=1

Πij
1−hij

(
ΠijPo(cij − hij ; (mi − di)eαj+ϕ′jvi.)

)hij
,

where Πij = 1
1+ d−di

di
e
−κj−w′iδj

.

C Sufficient Reduction Projection

We now show how these approximations allow us to recover the maximum likelihood estiamtes

for the model parameters even if we separate the big estimation problem in multiple independent

problems. Formally, under the conditions of the approximation described above we can factorize

the log-lihehood of the joint word distribution as follows:
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p(ci|mi, di) =
∏
j

[
1/(eγi+εij + 1)

]1−hij [
eγi+εij/(eγi+εij + 1)Po(cij − hij ; (mi − di)eηij )

]hij
=
∏
j

1
(1 + eγi+εij )

∏
j

e(γi+εij)hij
∏
j

[Po(cij − hij ; (mi − di)eηij )]hij

=
∏
j

1

(1 + e
log
(

di
d−di

)
+κj+w′iδj )

∏
j

e
(log
(

di
d−di

)
+κj+w′iδj)hij

∏
j

[Po(cij − hij ; (mi − di)eηij )]hij .

This has two components: the bernoulli component that determines each document vocabulary

and the Poisson that determines each document use of this vocabulary. Focusing on the bernoulli

component we can write,

∏
j

1

(1 + e
log
(

di
d−di

)
+κj+w′

i
δj )

∏
j

e
(log
(

di
d−di

)
+κj+w′iδj)hij =

∏
j

1

(1 + e
log
(

di
d−di

)
+κj+w′

i
δj )

∏
j

e

(
log
(

di
d−di

)
+κj
)
hij
∏
j

ew
′
iδjhij

= a(wi, di)ψ(hi)
d∏
j=1

ew
′
iδjhij

where ψ(hi) =
∏d
j=1 e

(
log
(

di
d−di

)
+κj
)
hij and a(wi, di) =

∏d
j=1

(
1 + e

log
(

di
d−di

)
+κj+w′iδj

)−1
. We

can similarly factorize the intensive margin component modeled with the poisson distribution as

∏
j

[Po(cij − hij ; (mi − di)eηij )]hij

=
d∏

j=1|hij=1

((mi − di)eηij )cij−1e−(mi−di)e
ηij

(cij − 1)!

=
d∏

j=1|hij=1

exp ((cij − 1) log (mi − di) + (cij − 1)ηij) exp (−(mi − di)eηij ) exp (−log ((cij − 1)!))

=
d∏

j=1|hij=1

exp
(

−(mi − di)eαj+ϕ′jvi
) d∏
j=1|hij=1

exp ((cij − 1) (log (mi − di) + αj) − log ((cij − 1)!))
d∏

j=1|hij=1

exp
(
(cij − 1)(ϕ′jvi)

)
.

Therefore the joint distribution can be factored in as

p(ci|vi, wi) = φ(ci)ψ(hi)a(wi, di)b(vi,mi, di) exp(w′iδhi + ϕvi(ci − hi)),

where

30



b(vi,mi, di) =
d∏

j=1|hij=1

exp
(
−(mi − di)eαj+ϕ

′
jvi
)

φ(ci) =
d∏

j=1|hij=1

exp ((cij − 1) (log (mi − di) + αj)− log ((cij − 1)!)) .

This expression is exactly the joint likelihood that our HDMR procedure maximizes.
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Figure 1: Mean distribution of WSJ front page articles monthly phrase counts

Notes: The figure shows the mean histogram for phrases that appear in the title or lead paragraph of front
page Wall Street Journal articles, aggregated to form a monthly sample from July 1926 to February 2016.
We construct the mean histogram by first calculating a histogram for each phrase across documents, and
then averaging over phrases and normalizing to unit scale. The left panel shows that the entire range is
highly sparse (has many zeros). The right panel omits zero counts, and shows that a poisson density fitted
to the entire range (dashed line) is a poor description of the positive range. The corpus includes the 10,000
most frequent two-word phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters
and Porter stemming. Including less frequent phrases makes the corpus sparser and the pattern above
more pronounced.
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Figure 2: Predicting the intermediary capital ratio with text and covariates: 10-fold cross validation

Notes: The top panel reports out-of-sample root mean squared error from a 10-fold cross validation exercise
that tries to predict the intermediary capital ratio (icrt) using the log price dividend ratio (pdt), realized
variance of financial stocks (rvfin) over the same month, over the prior month, and over the prior year,
and monthly WSJ front page phrase counts, over the subsample when the capital ratio is available, January
1970 to February 2016. Our proposed model, the hurdle distributed multinomial regression (HDMR) is
compared with two benchmarks: (a) The distributed multinomial regression (DMR), which is provided with
the same covariates and text, is a state-of-the-art approach to prediction with high-dimensional text, and (b)
a linear regression of the target on the same covariates without the text (No Text). The figure shows how
the advantage of HDMR in terms of out-of-sample fit changes as a function of the number of most frequent
phrases included in the corpus. Dashed lines indicate the 95% confidence interval. The bottom panel shows
how sparsity increases with this choice, where sparsity is the fraction of zero phrase counts in the corpus.
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Figure 3: Predicting the intermediary capital ratio with text and covariates: Pseudo out-of-sample

Notes: The top panel reports out-of-sample root mean squared error for predicting the intermediary capital
ratio (icrt) using the log price dividend ratio (pdt), realized variance of financial stocks (rvfin) over the
same month, over the prior month, and over the prior year, and monthly WSJ front page phrase counts,
over the subsample when the capital ratio is available, January 1970 to February 2016. Unlike the random
folds used before for validation, here we assess fit of a pseudo out-of-sample rolling back prediction exercise,
starting with the later half of the sample, predicting one observation earlier, then extending the training
sample by one earlier observation and rolling backward to assess fit in a backcasting exercise. Our proposed
model, the hurdle distributed multinomial regression (HDMR) is compared with two benchmarks: (a) The
distributed multinomial regression (DMR), which is provided with the same covariates and text, is a state-
of-the-art approach to prediction with high-dimensional text, and (b) a linear regression of the target on
the same covariates without the text (No Text). The figure shows how the advantage of HDMR in terms
of out-of-sample fit changes as a function of the number of most frequent phrases included in the corpus.
Dashed lines indicate the 95% confidence interval. The bottom panel shows how sparsity increases with this
choice, where sparsity is the fraction of zero phrase counts in the corpus.

38



Jan 1, 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Actual
No Text
DMR
HDMR
SVR
rvfin

t-13→t-1

-5

0

5

10

15

(a) Full sample

Ja
n
 1

, 
1

9
2

7

1
9

2
8

1
9

2
9

1
9

3
0

1
9

3
1

1
9

3
2

1
9

3
3

1
9

3
4

1
9

3
5

1
9

3
6

1
9

3
7

1
9

3
8

1
9

3
9

1
9

4
0

1
9

4
1

1
9

4
2

-5

0

5

10

15

(b) Great Depression

Ja
n
 1

, 
2

0
0

5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

0.0

2.5

5.0

7.5

10.0

(c) Great Recession

Figure 4: Backcasting the intermediary capital ratio with text and covariates

Notes: The figure shows the predicted intermediary capital ratio (îcrt) using the log price dividend ratio (pdt),
realized variance of financial stocks (rvfin) over the same month, over the prior month, and over the prior
year, and monthly WSJ front page phrase counts, over the extended sample, June 1927 to February 2016. The
intermediary capital ratio is only available starting January 1970. Our proposed model, the hurdle distributed
multinomial regression (HDMR), which excludes prior year financial stocks variance (rvfint−13→t−1, bottom
line) from the repetition equation, is compared with three benchmarks: (a) distributed multinomial regression
(DMR, Taddy, 2015), which is provided with the same covariates and text, (b) support vector regression
(SVR), and (c) linear regression of the target on the same covariates without the text (No Text).
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Figure 5: Focusing on the phrase “financial crisis” for intuition

Notes: The figure shows the predicted intermediary capital ratio (îcrt) due only to a single stemmed phrase,
“financi crisi.” Our proposed model, the hurdle distributed multinomial regression (HDMR) gives more
weight to the mere inclusion of this phrase on the front page of the Wall Street Journal, as opposed to its
repeated use. Distributed multinomial regression (DMR) estimates, which does not break the variation into
inclusion versus repetition, are shown for comparison.
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Figure 6: Mean distribution of full WSJ monthly phrase counts

Notes: The figure shows the normalized mean histogram for phrases that appear in the title or body of all
Wall Street Journal articles, aggregated to form a monthly sample from January 1990 to December 2010.
We construct the mean histogram by first calculating a histogram for each phrase across documents, and
then averaging over phrases and normalizing to unit scale. The corpus includes the 100,000 most frequent
two-word phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters and Porter
stemming.
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Figure 7: Predicting the intermediary capital ratio with denser text and covariates

Notes: The top panel reports out-of-sample root mean squared error from a 10-fold cross validation
exercise that tries to predict the intermediary capital ratio (icrt) using the log price dividend ratio
(pdt), realized variance of financial stocks (rvfin) over the same month, over the prior month, and
over the prior year, and all monthly WSJ phrase counts, over the subsample when this text is
available, January 1990 to December 2010.Our proposed model, the hurdle distributed multinomial
regression (HDMR) is compared with two benchmarks: (a) The distributed multinomial regres-
sion (DMR), which is provided with the same covariates and text, is a state-of-the-art approach
to prediction with high-dimensional text, and (b) a linear regression of the target on the same
covariates without the text (No Text). The figure shows how the advantage of HDMR in terms
of out-of-sample fit changes as a function of the number of most frequent phrases included in the
corpus. Dashed lines indicate the 95% confidence interval. The bottom panel shows how sparsity
increases with this choice, where sparsity is the fraction of zero phrase counts in the corpus.
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Table 1: Summary statistics: Backcasting application

Variable Mean Std Min p10 Median p90 Max Obs Available

Phrase counts, ctj 0.086 0.379 0.000 0.000 0.003 0.114 4.576 1075 192607–201602
Phrase indic. htj 0.054 0.212 0.000 0.000 0.002 0.089 1.000 1075 192607–201602

icr 6.236 2.399 2.230 3.616 5.574 9.578 13.400 557 197001–201605
pd 3.442 0.402 2.213 2.960 3.394 4.017 4.564 1075 192611–201605
rvfint−1→t 0.061 0.144 0.002 0.006 0.022 0.133 2.059 1079 192607–201605
rvfint−12→t 0.061 0.094 0.004 0.010 0.026 0.159 0.636 1068 192706–201605

Notes: Reported are summary statistics for the Wall Street Journal front page articles text and for variables
in the monthly sample from July 1926 to May 2016. The corpus includes the 10,000 most frequent two-word
phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters and Porter stemming. To
summarize the text, we report the mean of per phrase statistics, for counts ctj and for inclusion indicators,
htj ≡ 1{ctj>}. Intermediary capital ratio (icrt) is the aggregate ratio of market equity to market equity plus
book debt of New York Fed primary dealers in percentage terms. The log price over past year dividends
(pdt) is from CRSP. Realized variance (rvfin) is the annualized daily variance of financial stock returns over
the prior month (t− 1→ t) or year (t− 12→ t).
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Table 2: Predicting the intermediary capital ratio with text and covariates

(a) Cross-validation with 10 random folds

Out-of-sample In-sample

Model Text No Text Difference Text No Text Difference

HDMR 0.711 1.338 -0.627 0.573 1.322 -0.750
(0.021) (0.021) (0.020) (0.002) (0.002) (0.002)

DMR 0.818 1.338 -0.520 0.716 1.322 -0.606
(0.017) (0.021) (0.022) (0.003) (0.002) (0.004)

FHDMR 0.789 1.338 -0.549 0.673 1.322 -0.649
(0.016) (0.021) (0.020) (0.002) (0.002) (0.003)

SVR 1.256 1.334 -0.078 0.641 1.326 -0.685
(0.042) (0.020) (0.046) (0.005) (0.002) (0.005)

(b) Pseudo out-of-sample rolling back

Out-of-sample In-sample

Model Text No Text Difference Text No Text Difference

HDMR 0.750 1.249 -0.500 0.600 1.341 -0.741
(0.029) (0.036) (0.030) (0.002) (0.003) (0.002)

DMR 0.858 1.249 -0.391 0.770 1.341 -0.570
(0.028) (0.036) (0.022) (0.003) (0.003) (0.002)

FHDMR 0.828 1.249 -0.422 0.732 1.341 -0.609
(0.028) (0.036) (0.024) (0.003) (0.003) (0.002)

SVR 1.911 0.956 0.955 0.633 1.358 -0.725
(0.055) (0.042) (0.065) (0.001) (0.003) (0.003)

Notes: Reported is in- and out-of-sample root mean squared error (RMSE) for predicting the intermediary
capital ratio (icrt) using the log price dividend ratio (pdt), realized variance of financial stocks (rvfin) over
the same month, over the prior month, and over the prior year. Models with text additionally include
monthly WSJ front page phrase counts, over the subsample when the capital ratio is available, January 1970
to February 2016. The corpus includes the 10,000 most frequent two-word phrases (bigrams) in separate
sentences, after removing case, stopwords, nonletters and Porter stemming. Panel (a) uses 10 random folds
for validation while Panel (b) uses pseudo out of sample prediction, starting with the latter half of the
sample and rolling back one observation at a time. Our proposed model, the hurdle distributed multinomial
regression (HDMR), which excludes prior year rvfin from the repetition equation, is compared with three
benchmarks:(a) distributed multinomial regression (DMR, Taddy, 2015), which is provided with the same
covariates and text, (b) a “fabricated” variant of HDMR which adds hij = 1 (cij > 0) indicators to the
text counts matrix c and then runs DMR (FHDMR), and (c) support vector regression (SVR). For each
model we report RMSE with and without the text, the change in the measure of fit. Standard errors are in
parentheses.
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Table 3: Pivotal phrases for predicting the intermediary capital ratio out-of-sample

(a) Cross-validation with 10 random folds

Phrase ∆ OOS RMSE δ ϕ Mean counts Mean inclusions

barack obama 0.006 -7.050 -0.166 1.224 0.195
jobless marri 0.005 1.583 0.460 0.291 0.260
busi bulletin 0.004 2.338 0.195 4.863 0.602
instal credit 0.004 2.515 0.000 0.020 0.020
industri output 0.003 0.776 0.000 0.221 0.219
euro zone 0.003 -1.169 -1.677 0.508 0.132
penn central 0.003 1.375 2.024 0.063 0.042
presid nixon 0.003 1.210 0.528 0.291 0.123
aluminum output 0.003 1.329 0.753 0.206 0.177
labor letter 0.003 2.090 0.177 3.273 0.535

(b) Pseudo out-of-sample rolling back

Phrase ∆ OOS RMSE δ ϕ Mean counts Mean inclusions

busi bulletin 0.075 2.338 0.195 4.863 0.602
tax report 0.065 1.949 0.254 4.929 0.604
labor letter 0.063 2.090 0.177 3.273 0.535
washington wire 0.046 1.458 0.184 5.430 0.618
steel product 0.023 0.923 0.567 0.577 0.512
factori shipment 0.022 0.796 0.036 0.629 0.530
hour earn 0.022 0.987 0.000 0.570 0.524
jobless marri 0.019 1.583 0.460 0.291 0.260
and unfil 0.019 -0.188 0.000 0.219 0.215
lead indic 0.018 1.109 -0.163 0.492 0.391

Notes: The table reports the top 10 phrases whose removal from the corpus causes the largest deterioration
in out-of-sample root-mean-squared-error (∆ OOS RMSE), when predicting the intermediary capital ratio
(icrt) using text and the log price dividend ratio (pdt), realized variance of financial stocks (rvfin) over the
same month, over the prior month, and over the prior year. The text includes monthly WSJ front page phrase
counts, over the subsample when the capital ratio is available, January 1970 to February 2016. Panel (a) uses
10 random folds for validation while Panel (b) uses pseudo out of sample prediction, starting with the latter
half of the sample and rolling back one observation at a time. We also report full sample HDMR coefficients
on icrt for phrase inclusion (δ) and repetition (ϕ), and mean counts and inclusions across observations. The
corpus includes the 10,000 most frequent two-word phrases (bigrams) in separate sentences, after removing
case, stopwords, nonletters and Porter stemming.
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Table 4: Focusing on the phrase “financial crisis” for intuition

(a) Backward regressions

HDMR DMR

Repetition Inclusion

Intercept -10.73 -9.60 -16.65
icrt -0.43 -0.60 -0.61
pdt 2.04 4.01 3.49
rvfint−1→t 1.41 0.90 1.44
rvfint−2→t−1 -0.41 1.00 -0.54
rvfint−13→t−1 2.66 1.26

(b) Forward regressions

HDMR DMR

Repetition -1.11 -4.71
Inclusion -5.27

Notes: Panel (a) reports backward HDMR coefficient estimates for the (stemmed) phrase “financi
crisi” on the covariates, which excludes prior year financial stocks volatility (rvfin) from the rep-
etition equation. Panel (b) reports the forward regression coefficient products with those of the
backward regression, bzϕjy and bsδjy for HDMR, and contrasts it with the corresponding single
coefficient product of DMR. The hurdle distributed multinomial regression (HDMR) gives more
weight to the mere inclusion of this phrase on the front page of the Wall Street Journal, as opposed
to its repeated use. Distributed multinomial regression (DMR) estimates, which does not break the
variation into inclusion versus repetition, are shown for comparison. The corpus includes the 10,000
most frequent two-word phrases (bigrams) in separate sentences, after removing case, stopwords,
nonletters and Porter stemming.
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Table 5: Time-varying risk premia and the news-implied intermediary capital ratio

(a) Postwar sample, 194601–201602

remt→t+1 remt→t+3 remt→t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

icrt -3.10 -3.33 -2.94
(2.34) (2.57) (2.49)

îcrt -4.59*** -4.69** -5.00**
(1.77) (1.84) (1.95)

z0
t 6.44*** 6.75*** 6.41***

(2.44) (1.87) (1.65)
z+
t -3.06 -2.87 -3.13

(2.06) (2.02) (1.90)
pdt -9.61*** -10.13*** -10.13***

(2.50) (2.34) (2.19)
rvfint−1→t -9.86*** -4.60** -1.04

(2.79) (2.34) (0.78)
rvfint−2→t−1 4.32 0.47 0.63

(3.01) (2.15) (0.76)
rvfint−13→t−1 3.78 3.60** 1.24

(2.43) (1.79) (1.74)

N 552 841 841 552 841 841 544 833 833

(b) Full sample, 192707–201602

remt→t+1 remt→t+3 remt→t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

icrt -3.10 -3.33 -2.94
(2.34) (2.57) (2.49)

îcrt -4.31** -4.51 -4.90**
(1.99) (3.03) (2.45)

z0
t 2.57 2.70 3.50

(2.45) (3.84) (2.73)
z+
t -3.05 -3.25* -3.73**

(2.30) (1.91) (1.81)
pdt -5.96*** -6.35 -6.84**

(2.25) (4.08) (2.81)
rvfint−1→t -4.19 -1.36 -0.99

(2.60) (2.59) (1.29)
rvfint−2→t−1 4.24 0.08 -0.15

(2.78) (2.45) (1.31)
rvfint−13→t−1 -3.54 -2.35 -2.98

(2.67) (3.58) (3.57)

N 552 1,062 1,061 552 1,062 1,061 544 1,054 1,053

Notes: Reported are time-series predictability regression estimates of future stock market excess
returns (remt→t+τ ) at one to twelve month horizons on the intermediary capital ratio (icrt) in the
short sample in which it is available, on the news-implied îcrt that is available for a much longer
time-series. We additionally decompose the îcrt into the sufficient reduction projections z0

t , z+
t that

summarize the text, the log price dividend ratio (pdt), realized variance of financial stocks (rvfin)
over the same month, over the prior month, and over the prior year. Explanatory variables are
demeaned and scaled to unit variance. The corpus includes the 10,000 most frequent two-word
phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters and Porter
stemming. * p < 0.1, ** p < 0.05, *** p < 0.01. Hodrick (1992) standard errors are in parentheses.
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Table 6: Summary statistics: Macroeconomic forecasting dataset

Variable Mean Std Min p10 Median p90 Max Obs Available

Phrase counts, ctj 2.971 2.732 0.178 0.590 2.342 6.190 16.909 252 199001–201012
Phrase indic. htj 0.680 0.409 0.032 0.161 0.860 0.998 1.000 252 199001–201012

IP: total 0.873 3.225 -16.153 -2.760 1.081 4.423 12.172 602 195901–200902
Emp: total 0.606 1.075 -4.177 -0.679 0.769 1.718 5.830 602 195901–200902
U: all 0.004 0.183 -0.700 -0.200 0.000 0.200 0.900 602 195901–200902
HStarts: Total 7.306 0.236 6.190 6.990 7.326 7.602 7.822 602 195901–200902
PMI 52.867 6.927 29.400 44.100 53.500 60.780 72.100 603 195901–200903
CPI-ALL 0.000 1.089 -5.401 -1.187 -0.003 1.099 7.175 602 195902–200903
Real AHE: goods 0.295 1.318 -4.700 -1.187 0.272 1.688 6.274 602 195901–200902
FedFunds 0.002 0.371 -1.560 -0.420 0.010 0.380 1.600 602 195901–200902
M1 0.012 2.188 -10.512 -2.347 -0.000 2.414 7.485 601 195902–200902
Ex rate: avg -0.172 6.017 -21.276 -8.339 0.038 6.961 21.450 601 195901–200901
S&P 500 1.807 14.500 -91.237 -14.479 2.821 17.014 45.411 603 195901–200903
Consumer expect -0.053 3.975 -16.500 -4.600 -0.200 4.600 22.500 603 195901–200903

Notes: Reported are summary statistics for the Wall Street Journal full text and for target variables in
the monthly sample of Stock and Watson (2012). The corpus includes the 100,000 most frequent two-word
phrases (bigrams) in separate sentences, after removing case, stopwords, nonletters and Porter stemming. To
summarize the text, we report the mean of per phrase statistics, for counts ctj and for inclusion indicators,
htj ≡ 1{ctj>}. For each of the 12 categories of variables we use the headline variable as the prediction target.
The transformed series are generally first differences of logarithms (growth rates) for real quantity variables,
first differences for nominal interest rates, and second differences of logarithms (changes in rates of inflation)
for price series.
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Table 7: Forecasting macroeconomic series

(a) Wall Street Journal full text, 10,000 most frequent phrases

Months forward: τ = 1 τ = 3 τ = 12

Folds: Random Rolling Random Rolling Random Rolling

Y τt+τ \ Benchmark: DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR

IP: total 0.986 1.026 0.953 0.963* 0.856*** 0.961** 0.827*** 0.957*** 0.697*** 0.879*** 0.668*** 0.852***
(0.395) (0.801) (0.127) (0.086) (0.005) (0.033) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

Emp: total 0.831*** 0.967 0.817*** 0.867*** 0.763*** 0.917*** 0.751*** 0.844*** 0.679*** 0.873*** 0.640*** 0.780***
(0.001) (0.110) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000)

U: all 0.954 1.005 0.979 0.975 0.805*** 0.954** 0.735*** 0.911*** 0.641*** 0.849*** 0.621*** 0.825***
(0.181) (0.584) (0.328) (0.266) (0.000) (0.040) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000)

HStarts: Total 0.677*** 1.038 0.694*** 0.906*** 0.633*** 0.997 0.658*** 0.852*** 0.624*** 1.093 0.773*** 1.018
(0.000) (0.943) (0.000) (0.000) (0.000) (0.439) (0.000) (0.000) (0.000) (0.998) (0.000) (0.885)

PMI 0.838*** 1.028 1.029 1.043 0.853*** 1.018 1.009 1.091 0.714*** 0.952*** 0.822*** 0.893***
(0.000) (0.837) (0.687) (0.917) (0.000) (0.770) (0.558) (0.998) (0.000) (0.009) (0.003) (0.000)

CPI-ALL 1.090 0.996 1.134 0.957* 1.062 0.975 1.105 1.046 1.026 1.006 1.103 1.105
(1.000) (0.390) (1.000) (0.074) (1.000) (0.196) (1.000) (0.914) (0.951) (0.651) (0.994) (0.999)

Real AHE: goods 0.968 0.972 1.033 1.021 0.889*** 0.964 0.992 0.961 0.616*** 0.984 0.844*** 0.938***
(0.230) (0.211) (0.780) (0.729) (0.007) (0.177) (0.429) (0.107) (0.000) (0.269) (0.007) (0.000)

FedFunds 0.914*** 0.996 1.042 0.986 0.812*** 0.974 1.038 1.025 0.647*** 0.972 0.869** 0.943*
(0.000) (0.442) (0.776) (0.312) (0.000) (0.194) (0.722) (0.774) (0.000) (0.178) (0.026) (0.070)

M1 1.101 1.018 1.179 1.006 1.109 1.014 1.236 1.090 1.004 1.003 1.068 0.959
(1.000) (0.964) (1.000) (0.602) (0.998) (0.707) (1.000) (0.999) (0.550) (0.556) (0.932) (0.144)

Ex rate: avg 1.066 1.008 1.088 0.922*** 1.011 1.041 1.005 0.929** 0.891*** 1.067 0.849** 0.982
(1.000) (0.696) (0.953) (0.005) (0.640) (0.974) (0.535) (0.019) (0.002) (0.999) (0.012) (0.246)

S&P 500 1.030 1.008 1.072 1.067 0.937* 0.995 0.934 1.044 0.750*** 0.955** 0.692*** 0.939***
(0.816) (0.811) (0.945) (0.995) (0.076) (0.366) (0.108) (0.955) (0.000) (0.010) (0.000) (0.005)

Consumer expect 1.096 0.944*** 1.233 0.828*** 1.032 1.010 1.110 0.971 0.953 1.040 0.865** 1.017
(1.000) (0.006) (1.000) (0.000) (0.858) (0.639) (0.994) (0.212) (0.140) (0.987) (0.014) (0.707)

(b) Wall Street Journal full text, 100,000 most frequent phrases

Months forward: τ = 1 τ = 3 τ = 12

Folds: Random Rolling Random Rolling Random Rolling

Y τt+τ \ Benchmark: DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR

IP: total 0.985 1.025 0.984 0.985 0.835*** 0.944** 0.847*** 0.990 0.607*** 0.784*** 0.641*** 0.834***
(0.401) (0.747) (0.337) (0.312) (0.000) (0.027) (0.000) (0.297) (0.000) (0.000) (0.000) (0.000)

Emp: total 0.762*** 0.914** 0.884*** 0.961 0.676*** 0.841*** 0.776*** 0.887*** 0.499*** 0.676*** 0.568*** 0.727***
(0.000) (0.021) (0.006) (0.151) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

U: all 0.942 0.996 0.976 0.983 0.796*** 0.965 0.880*** 1.113 0.545*** 0.772*** 0.664*** 0.912***
(0.111) (0.446) (0.310) (0.348) (0.000) (0.242) (0.000) (0.995) (0.000) (0.000) (0.000) (0.000)

HStarts: Total 0.555*** 0.858*** 0.528*** 0.689*** 0.512*** 0.819*** 0.512*** 0.672*** 0.504*** 0.899** 0.521*** 0.687***
(0.000) (0.005) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.029) (0.000) (0.000)

PMI 0.808*** 1.044 0.969 0.972 0.840*** 1.067 0.937 1.002 0.800*** 1.106 0.915* 0.983
(0.000) (0.948) (0.306) (0.186) (0.000) (0.995) (0.133) (0.529) (0.000) (0.990) (0.054) (0.341)

CPI-ALL 1.061 0.923*** 1.054 0.846*** 1.063 0.941*** 1.027 0.930** 1.072 1.033 1.052 1.020
(1.000) (0.000) (0.999) (0.000) (1.000) (0.001) (0.907) (0.011) (0.998) (0.845) (0.973) (0.756)

Real AHE: goods 1.000 0.988 1.070 1.042 0.982 1.085 1.026 1.026 0.643*** 1.082 0.818*** 0.923***
(0.503) (0.336) (0.962) (0.874) (0.283) (0.990) (0.739) (0.828) (0.000) (1.000) (0.002) (0.000)

FedFunds 0.954** 1.053 1.166 1.123 0.880*** 1.094 1.006 1.032 0.734*** 1.218 0.726*** 0.858***
(0.047) (0.929) (1.000) (0.993) (0.000) (0.988) (0.546) (0.815) (0.000) (1.000) (0.000) (0.000)

M1 1.039 0.887*** 1.090 0.776*** 1.024 0.883*** 1.121 0.844*** 1.036 1.032 1.070 0.941*
(1.000) (0.000) (1.000) (0.000) (0.990) (0.000) (1.000) (0.000) (0.897) (0.880) (0.990) (0.066)

Ex rate: avg 1.060 0.982 1.086 0.850*** 1.082 1.118 1.059 0.933** 0.756*** 0.939*** 0.837*** 0.984
(1.000) (0.205) (0.984) (0.000) (1.000) (1.000) (0.895) (0.047) (0.000) (0.007) (0.006) (0.259)

S&P 500 1.086 1.052 1.049 1.032 0.898** 0.962** 0.913** 1.042 0.631*** 0.823*** 0.614*** 0.857***
(0.999) (0.978) (0.888) (0.919) (0.028) (0.031) (0.028) (0.956) (0.000) (0.000) (0.000) (0.000)

Consumer expect 1.028 0.851*** 1.048 0.707*** 1.064 1.027 1.054 0.905*** 0.899*** 0.988 0.970 1.137
(1.000) (0.000) (0.986) (0.000) (0.988) (0.806) (0.954) (0.009) (0.010) (0.369) (0.296) (1.000)

Notes: Reported are out-of-sample RMSE for HDMR that uses the lagged text plus the top 5 PCs of the Stock and Watson (2012) monthly macroeconomic series,
relative to DFM-5, which uses only these PCs without the text, and relative to DMR with the same data. Diebold and Mariano (1995) p-values testing the null
hypothesis that the RMSE of HDMR is larger than the benchmark’s are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 8: Nowcasting macroeconomic series

(a) Wall Street Journal full text, 10,000 most frequent phrases

Months forward: τ = 1 τ = 3 τ = 12

Folds: Random Rolling Random Rolling Random Rolling

Y τt+τ \ Benchmark: DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR

IP: total 0.956** 1.013 0.947* 0.980 0.853*** 0.963** 0.802*** 0.929*** 0.706*** 0.893*** 0.653*** 0.838***
(0.033) (0.859) (0.061) (0.209) (0.000) (0.027) (0.000) (0.000) (0.000) (0.005) (0.000) (0.000)

Emp: total 0.804*** 0.947** 0.769*** 0.868*** 0.747*** 0.915*** 0.747*** 0.862*** 0.686*** 0.888*** 0.652*** 0.797***
(0.000) (0.015) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.007) (0.000) (0.000)

U: all 0.962 1.020 0.928* 0.989 0.820*** 0.974*** 0.759*** 0.942** 0.657*** 0.890*** 0.639*** 0.866***
(0.202) (0.955) (0.067) (0.358) (0.000) (0.009) (0.000) (0.034) (0.000) (0.006) (0.000) (0.000)

HStarts: Total 0.655*** 1.013 0.669*** 0.885*** 0.636*** 1.020 0.651*** 0.857*** 0.621*** 1.102 0.755*** 1.001
(0.000) (0.631) (0.000) (0.000) (0.000) (0.788) (0.000) (0.000) (0.000) (1.000) (0.000) (0.512)

PMI 0.853*** 1.016 1.038 1.059 0.850*** 1.011 1.033 1.119 0.729*** 0.965 0.842*** 0.897***
(0.000) (0.669) (0.756) (0.961) (0.000) (0.711) (0.692) (1.000) (0.000) (0.114) (0.008) (0.000)

CPI-ALL 1.027 0.949** 1.171 0.936** 1.060 0.976** 1.115 1.028 1.044 1.018 1.069 1.062
(0.970) (0.015) (1.000) (0.014) (0.998) (0.038) (1.000) (0.890) (0.990) (0.847) (0.977) (0.997)

Real AHE: goods 1.036 1.019 1.051 1.008 0.910** 0.964 0.987 1.007 0.597*** 0.971 0.829*** 0.924***
(0.797) (0.872) (0.880) (0.627) (0.027) (0.175) (0.383) (0.580) (0.000) (0.216) (0.002) (0.000)

FedFunds 0.923* 1.023 1.069 1.063 0.831*** 1.023 1.040 1.079 0.641*** 0.951** 0.858** 0.795***
(0.051) (0.809) (0.906) (0.967) (0.000) (0.750) (0.755) (0.979) (0.000) (0.020) (0.015) (0.000)

M1 1.125 0.974 1.264 0.840*** 1.101 1.019 1.180 0.623*** 1.010 1.028 1.056 1.005
(1.000) (0.237) (1.000) (0.000) (1.000) (0.943) (1.000) (0.000) (0.618) (0.951) (0.919) (0.589)

Ex rate: avg 1.043 0.980* 1.055 0.942** 1.018 1.039 1.090 1.010 0.879*** 1.058 0.918 1.053
(0.949) (0.086) (0.852) (0.023) (0.685) (0.957) (0.922) (0.635) (0.002) (1.000) (0.121) (0.971)

S&P 500 1.012 0.991 1.032 1.024 0.939* 1.000 0.948 1.037 0.763*** 0.970 0.715*** 0.901***
(0.654) (0.374) (0.776) (0.806) (0.082) (0.496) (0.185) (0.874) (0.000) (0.129) (0.000) (0.003)

Consumer expect 1.171 0.995 1.265 0.936** 1.007 0.990 1.115 0.948 0.942** 1.028 0.895** 1.018
(1.000) (0.409) (1.000) (0.014) (0.644) (0.219) (0.994) (0.106) (0.031) (0.886) (0.043) (0.728)

(b) Wall Street Journal full text, 100,000 most frequent phrases

Months forward: τ = 1 τ = 3 τ = 12

Folds: Random Rolling Random Rolling Random Rolling

Y τt+τ \ Benchmark: DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR DFM-5 DMR

IP: total 0.956** 1.015 0.986 1.013 0.813*** 0.932** 0.831*** 0.974* 0.608*** 0.788*** 0.645*** 0.844***
(0.012) (0.734) (0.336) (0.640) (0.000) (0.024) (0.000) (0.098) (0.000) (0.000) (0.000) (0.000)

Emp: total 0.764*** 0.931** 0.879*** 1.006 0.666*** 0.854*** 0.782*** 0.923*** 0.521*** 0.717*** 0.589*** 0.753***
(0.000) (0.015) (0.004) (0.569) (0.000) (0.001) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000)

U: all 0.942* 0.998 0.955 1.008 0.788*** 0.963 0.880*** 1.131 0.544*** 0.795*** 0.692*** 0.970
(0.098) (0.469) (0.154) (0.581) (0.000) (0.197) (0.001) (0.999) (0.000) (0.000) (0.000) (0.144)

HStarts: Total 0.534*** 0.832*** 0.523*** 0.698*** 0.516*** 0.833*** 0.503*** 0.670*** 0.454*** 0.811*** 0.499*** 0.661***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

PMI 0.822*** 1.025 0.963 0.981 0.853*** 1.075 0.947 1.019 0.817*** 1.127 0.932* 0.992
(0.000) (0.757) (0.266) (0.286) (0.000) (0.984) (0.187) (0.732) (0.000) (1.000) (0.090) (0.418)

CPI-ALL 0.969* 0.843*** 1.061 0.739*** 1.048 0.923*** 1.054 0.928*** 1.062 1.010 1.052 1.021
(0.065) (0.000) (0.997) (0.000) (0.978) (0.000) (0.993) (0.005) (0.991) (0.664) (0.971) (0.783)

Real AHE: goods 1.024 1.000 1.109 1.057 1.022 1.096 1.057 1.085 0.633*** 1.088 0.810*** 0.914***
(0.806) (0.501) (0.996) (0.937) (0.725) (0.993) (0.927) (0.997) (0.000) (0.998) (0.001) (0.000)

FedFunds 0.945* 1.064 1.131 1.123 0.870*** 1.107 1.016 1.067 0.713*** 1.169 0.764*** 0.887***
(0.090) (0.996) (1.000) (0.996) (0.000) (0.999) (0.634) (0.960) (0.000) (1.000) (0.000) (0.010)

M1 1.084 0.854*** 1.121 0.713*** 1.048 0.922*** 1.108 0.624*** 1.042 1.046 1.055 0.953*
(0.999) (0.000) (1.000) (0.000) (1.000) (0.000) (1.000) (0.000) (0.904) (0.922) (0.961) (0.065)

Ex rate: avg 1.034 0.949** 1.031 0.862*** 1.091 1.121 1.052 0.927** 0.764*** 0.950** 0.872** 1.009
(0.936) (0.027) (0.795) (0.000) (0.983) (1.000) (0.873) (0.029) (0.000) (0.010) (0.026) (0.645)

S&P 500 1.018 0.996 0.996 0.974 0.911** 0.980 0.895** 0.999 0.667*** 0.870*** 0.642*** 0.866***
(0.672) (0.443) (0.460) (0.191) (0.017) (0.158) (0.012) (0.485) (0.000) (0.000) (0.000) (0.000)

Consumer expect 1.030 0.834*** 1.013 0.695*** 1.038 1.005 1.044 0.852*** 0.910*** 1.001 0.991 1.129
(0.980) (0.000) (0.747) (0.000) (0.887) (0.554) (0.934) (0.001) (0.006) (0.509) (0.435) (1.000)

Notes: Reported are out-of-sample RMSE for HDMR that uses the contemporaneous text plus the top 5 PCs of the Stock and Watson (2012) monthly macroe-
conomic series, relative to DFM-5, which uses only these PCs without the text, and relative to DMR with the same data. Diebold and Mariano (1995) p-values
testing the null hypothesis that the RMSE of HDMR is larger than the benchmark’s are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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