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Abstract

We study the problem of an investor that allocates analysts to assets to learn about

future asset values. We show that when analysts are better at relative rather than abso-

lute asset valuations the optimal matching of analysts to assets displays a balancedness

property in which pairs of distinct assets are covered by a similar number of analysts.

A balanced allocation allows the investor to e�ciently aggregate information using the

relative value between assets, eliminating the e�ect of the analyst-speci�c component.

We show that the optimal matching of analysts to assets and the optimal portfolio

decision depends on the structure of the analyst coverage network - the bipartite graph

where the vertices are the �rms and the edges are all the pairs of distinct �rms that

are covered by at least one common analyst. For example, capital is only reallocated

between �rms that are connected in the network, and the intensity of the reallocations

depends on both the value of relative asset recommendations and the strength of the

connection between the assets.
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1. Introduction

How should investors aggregate information produced by a wide variety of approaches? The-

ory typically model the information acquisition problem as a cost function that is increasing

in the precision of the acquired signal. In this paper, we go inside the information production

black box and study how an investor decentralizes information production and aggregates

information of a variety of sources. The key ingredient of our analysis is the idea that we are

better at producing relative value signals. For example, a �nancial analyst that covers two

di�erent �rms can provide a more informative signal about the relative value across �rms,

i.e. how much the �rst �rm is overpriced relative to the second �rm, than a signal about their

absolute value, i.e how much each �rm should worth. While it is well known that relative

valuation is ubiquitous in �nance, both among practitioners and academics, the implications

are not completely understood.

In this paper, we study the importance of relative valuation from the perspective of an

investor that must decide how to produce and aggregate information. The investor problem

starts with the problem of how to allocate analysts to �rms. Relative valuation implies

that the production of information depends not only of the total number of hours analysts

spend researching each �rm, but on the entire information production network, the bipartite

graph where the vertices are the �rms and the edges are all the pairs of distinct �rms that are

covered by at least one common analyst. The entire information production network matters

because it changes the information content of a signal produced by a particular information

source.

To understand the importance of the information production network an example is

useful. Consider three �rms (A,B,C) and three analysts (1,2,3) with capacity to analyze two

�rms each and a total time budget of one day. When signals produced are absolute, lets

say a better forecast of the �rm discounted cash-�ows, the following two arrangements are

equivalent from the perspective of investors: one can concentrate one day of each analyst

in each �rm, or have each analyst learn about any two �rms with a total time allocation of

one day per �rm. As a matter of fact, in the case of absolute valuation, there is no notion

of the information production unit, the analyst is this example. All that matters in this

case is the total allocation of analyst time per �rm. When the information is relative the
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�rst arrangement would produce no information at all, and the information produced in the

second arrangement would depend how exactly each analyst splits her time between �rms.

While our theoretical analysis will focus on the portfolio problem of a stock market

investor, the paper insights apply whenever signals generated by multiple information pro-

duction units need to be aggregated by a principal. For example, Metrick and Yasuda (2010)

show that General Partners in Private Equity and Venture Capital funds often are respon-

sible for no more that four �rms. In the credit market, Fracassi, Petry, and Tate (2016)

show that credit analysts inside credit rating �rms cover eleven �rms on average. In the

context of the stock market, Gomes, Gopalan, Leary, and Marcet (2016) document that

�nancial analyst cover on average seven di�erent �rms. The fact that analysts concentrate

on analyzing only a small subset of �rms, together with the fact that analysts do not seem

to produce informative absolute signals (for example, see Fracassi et al. (2016)) implies that

the information production network is essential to the optimal aggregation of information.

Our models is as follows. An investor deploys agents whom can only produce information

about a subset of assets; each agent produces a noisy signal of asset values containing an

agent speci�c-component common across all assets followed by the agent. The variance of

this agent speci�c component controls the degree of relative valuation. A very high variance

of this agent speci�c component captures situations when agents have models that are so

distinct that render comparison of signals produced my di�erent agents uninformative. The

investor chooses which assets each agent will cover and how much time each agent allocates

to the assets being covered. The model has three periods: in period one, the investor chooses

how to allocate agents to assets; in period two, the investor observes the signals produced

by the agents, and then the investor makes his investment decision; �nally, in period three,

the investor receives the payo�s from his investments.

We begin the analysis by obtaining the optimal investment decision given the signals

produced by the agents. We obtain closed-form expressions for the posterior mean and

variance of asset returns as function of the signals and the information production network.

Speci�cally, we show that the posterior covariance between two di�erent stock returns is a

function of the analyst connection strength between these �rms. The posterior covariance is

in turn the key determinant of how signals are interpreted. We show that a positive signal
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about �rm i produced by analyst a implies positive (negative) information about �rm j if

the connection between �rm i and j (i.e., the posterior covariance) is stronger (weaker) than

the average connection between �rm i and all the other �rms covered directly by analyst a.

Because the connection strength between any two �rms depend on paths connecting both

�rms, the mapping from signal to information requires knowledge of the entire information

production network.

These insights have sharp implications for how the investor responds to new information.

First, we show that wealth is only reallocated within a connected component of the network.

That is, the investor only reallocate his portfolio across �rms that have a chain of analysts

linking them. Second, we show that the extent to which investors make reallocations of

capital across connected stocks depends on the the strength of the connection between the

stocks. For example, a positive signal about a single �rm i causes a reallocation of capital

throughout �rm i's entire network component. The �rms which are most closely connected

(but not linked) to �rm i receive positive reallocations of capital when �rm i receives a

positive signal. Since no capital can leave the component, the capital is taken from �rms

whom which i is less connected. We show further that in the knife edge case that all

the information is potentially learnable, the increase in the posterior covariance between

connected (but not linked �rms) exactly o�sets the changes in expected returns due the

information produced. In this case capital is only reallocated across �rm covered by the

same analyst.

In order to study the optimal allocation of information resources, we �rst characterize in

closed form the investor ex-ante utility as function of the information production network.

We show that investor's utility function can be expressed as a monotonically increasing and

concave function of the information production network. The monotonicity and concavity

properties allow us to show that there is a unique global optimum for information production

network.

We �nd it useful to illustrate the implications of relative valuation for the optimal ar-

rangement of information production resources by contrasting it with the absolute valuation

case. We start by showing that relative valuation is a strong force for diversi�cation in

information production even when preferences are conductive to specialization. Relative val-
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uation introduces complementaries in information production because the value of the signal

produced about a single �rm increases the more other �rms' signals it can be compared with.

Another distinctive implication of relative valuation is that the investor allocates analysts to

pair of �rms that are ex-ante expected to form pro�table long-short portfolios. Speci�cally,

they start by covering pairs that the return di�erence have the highest (uncentered) second

moments.

Our analysis emphasizes relative valuation,the situation where comparisons of signals

across analysts is completely uninformative. But our framework is �exible to consider less

extreme cases. For example, our framework coincides with the popular Van Nieuwerburgh

and Veldkamp (2010) model of information production and portfolio allocation in the extreme

case where signals only have absolute information. We show how our framework can be used

to study the choice of relative versus absolute information production. Speci�cally, we show

how an increase in the analyst capacity to analyze multiple �rms, for example due to a

reduction in the �xed costs associated with information production, leads the investor to

optimally shift production towards relative valuation. Intuitively, when the analyst can look

at more �rms, relative valuation becomes more powerful as it allows the investor to reallocate

capital across more �rms. This again emphasizes the important role that the information

production unit plays in a relative valuation world.

Having studied the problem of how to allocate one single information production unit,

we study the problem of how to design the entire information production network. We show

that relative valuation introduces a strong force for balancedness in the network. We start by

showing that when the �rms are symmetric, the optimal network has exactly the same num-

ber of analysts covering any pairs of stocks, i.e. the network is said to be balanced. We then

extend our analysis to show this property holds even in less symmetric environments. Specif-

ically, we show that in a multi-industry setting that the information production network is

block balanced, with intra-industry pairs having more analyst coverage than across-industry

pairs.

The result that the optimal assignment should exhibit a balancedness property, can be

illustrated by means of the following simple example. A balanced allocation is one where

every pair of distinct assets is covered by exactly the same set of analysts. For exam-
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ple, suppose that we have 6 stocks and 10 analysts that can each cover 3 stocks. Then

the unique balanced allocation is {123, 124, 135, 146, 156, 236, 245, 256, 345, 346} where each
triple abc denotes the stocks, labelled 1 to 6, covered by each of the 10 analysts. The struc-

ture is said to be balanced because each pair of stocks is covered by exactly 2 analysts (for

example, stocks 4 and 5 are covered by analysts 7 and 9). Note that each asset is cov-

ered by 5 analysts, but there are many other allocations of 10 analysts to 6 stocks where

each asset is covered by exactly 5 analysts, such as for example the unbalanced allocation

{123, 123, 123, 123, 123, 456, 456, 456, 456, 456}. We show that under some parametrizations,

the unique balanced allocation above yields 25% higher investor utility than the unbalanced

structure. Economically, balanced allocations of analysts to assets help increase investor's

utility because it improve the investor's ability to e�ciently explore relative valuation.

Our paper contributes to several strands of literature. First, our paper is related to the

literatures on information acquisition and investment (Veldkamp (2011)) and endogenous

analyst network formation (Hong and Chang (2016)). Second, our paper highlights an intri-

cate link between the literature on Bayesian portfolio choice (Black and Litterman (1992);

Zhou (2009); Go�man and Manela (2012)) and the literature on the use of graph theory and

networks in �nance (Anton and Polk (2013), DeGroot (1974), Golub and Jackson (2010),

Kelly et al. (2013)). We show how the analyst coverage network impacts information ag-

gregation and portfolio choice in a Bayesian setting. In the optimal Bayesian investment

strategy, reallocation across industries depends on the structure of the Laplacian matrix of

the analyst coverage network. In addition, the strength of the connections within the net-

work determines how to adjust the weights in the optimal portfolio in response to changes

in analyst recommendations. One of the key contributions of our paper is to show that the

structure of the coverage network provides the information necessary for this weighting on

the information.

Third, our paper develops a portfolio approach that mitigates the known bias in analyst

recommendations. A large literature documents that analyst recommendations may be bi-

ased because of career concerns (Hong and Kubik (2004)), investment banking relationships

(Michaely and Womack (1999); Kadan, Madureira, Wang, and Zach (2009)), and prefer-

ences for stocks with certain quantitative characteristics (Jegadeesh, Kim, Krische, and Lee
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(2004)). Our paper provides a formal method for e�ciently extracting information about

excess future returns even when analyst recommendations display systematic biases.

Fourth, our model helps explain some of the extant empirical �ndings related to analyst

stock recommendations. Boni and Womack (2006) show that analysts create value only by

ranking stocks within industries. Jegadeesh et al. (2004) �nd that the level of the consen-

sus analyst recommendation contains no marginal predictive power about returns. In other

words, the extant literature �nds that the value of analyst recommendations comes from

their ability to rank stocks relatively rather than absolutely. Our model admits this empir-

ical �nding. When analyst recommendations are biased and investors have uninformative

priors, only relative valuations matter. Moreover, when all industries belong to disconnected

components of the analyst coverage network, the optimal portfolio only reallocates wealth

relatively among stocks within industries. Reallocation across industries only occurs when

industries are �bridged� by a common analyst. This supports the ideas in Kadan, Madureira,

Wang, and Zach (2012) and Boni and Womack (2006) that �rm recommendations only con-

tain information about industry level prospects when analysts use a market benchmark.

2. The Model

The model has three periods. In period t = 1, an investor chooses how to allocate m

information production units (analysts) to n risky assets in order to produce information

about period t = 3 asset values. In period t = 2, the investor receives the information

produced by the analysts, and then chooses how to invest her wealth across n risky assets

and one risk-free asset. In period t = 3, the investor receives the returns from her investment.

2.1 Assets

The n tradable assets in the economy are labeled i = 1, .., n. We denote by Ri the return

from investing in asset i from period t = 2 to period t = 3, and by R the vector of asset

returns. Throughout the analysis, we assume that asset prices are given and normalized to

1 in period t = 2. Furthermore, asset returns follow a normal distribution, R ∼ N(R̄,Σ),

with prior expected return R̄ and variance Σ.
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We decompose individual asset returns, Ri, into a learnable return component, ri, and

an unlearnable return component, ηi:

Ri = R̄i + ri + ηi, (1)

where E(Ri) = R̄i is the unconditional expected return. The term ri captures the variation

in fundamentals that can be learned by analysts through research, while the term ηi captures

risk fundamentals that cannot be learned.1 Both ri and ηi are normally distributed with zero

mean and independent distributions:

r ∼ N(0,Σl) and η ∼ N(0,Σu) and R ∼ N(R̄,Σ) with Σ = Σl + Σu. (2)

A case of particular interest is when only a fraction α ∈ [0, 1] of the unconditional return

variation is learnable. In this case, the learnable component of returns has variance Σl = αΣ

and the unlearnable component has variance Σu = (1− α) Σ. Our model collapses to a fully

learnable case, where Σl = Σ and Σu = 0, whenever α = 1. This is the case that is most

commonly studied in the literature (e.g., Van Nieuwerburgh and Veldkamp (2010)).

2.2 Information Structure

In period t = 1, the investor can deploy m analysts, labeled a = 1, ...,m, to produce infor-

mation (signals) about period t = 3 asset returns. Speci�cally, each analyst a can produce

a signal yia about the learnable component of asset returns, ri:

yia = ri + ua + εia, (3)

where ua is an analyst-speci�c error term, and εia is an asset-analyst error term which is

independent of ua.

The term ua can be conceptualized as a measurement error (or bias) that is common

across all signals produced by an analyst.2 We assume that ua follows a normal distribution

1The introduction of an unlearnable component implies an upper bound to the Sharpe ratio the investor

can obtain by producing information.
2For example, an analyst may be an optimist and consistently report upward biased signals.
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with mean zero and precision φa, where the precision controls the degree of relative valua-

tion.3 Speci�cally, as the variance of ua grows, analyst signals become less informative about

the level of asset returns, while the information content of signal di�erences, i.e. relative

comparisons, remains unchanged. We refer to the case when the analyst-speci�c error is very

precise (i.e., when φa → ∞) as absolute valuation, and we refer to the case when the error

is very imprecise (i.e., when φa = 0) as relative valuation.

The asset-analyst error term, εia, follows a normal distribution with mean zero and

precision τaθia, where the term τa > 0 denotes the total precision of analyst a and θia ≥ 0

denotes the fraction of time spent by analyst a researching asset i (s.t.
∑n

i=1 θia = 1).

While τa is given exogenously, the investor chooses how to allocate the research e�orts of

the analysts (given by the set {θia}ai ) in period t = 1. Therefore, τaθia ≥ 0 is the amount

of analyst a's total precision that the investor allocates to asset i. We assume that the

distribution of εia is independent across i, and that each analyst a can produce information

for at most qa < n assets.4.

To summarize, the signal structure is given by:

ua ∼ N
(
0, φ−1

a

)
and εia ∼ N

(
0, (τaθia)

−1) with
n∑
i=1

θia = 1. (4)

The signal structure can be represented in vector notation as ya = r + ua1 + εa, where

εa ∼ N(0, (τadiag (θa))
−1) and εa and ua are independent across analysts.

5

2.3 Portfolio Choice and Utility

The investor has wealth normalized to W=1. In period t = 2, the investor observes the

analyst signals y = [y′1, ..., y
′
m]′ and chooses portfolio weights ω = [ω1, ..., ωn]′ for the n risky

assets, with the remainder (1−
∑n

i=1 ωi) allocated to the risk-free asset. The investor's total

3As is standard in the literature, we de�ne precision as the inverse of variance. That is, for a random

variable x, precision(x) = variance(x)−1.
4Such a constraint arises naturally in a setting with �rm speci�c �xed costs in information production.
5The important aspect of this information structure is what it implies for the information content of the

signal produced by the analyst. Furthermore, the signal content is invariant to any a�ne transformation of

the signal ya. Therefore, relative valuation does not imply that the actual volatility of the signals reported

to investor by the analyst have in�nite variance. In fact, because the model is invariant to any a�ne

transformation, the variance of the signal is not determined. We thank David Hirshleifer for this point.
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return, Rp, is equal to Rp = ω (y)′ (R− rf )+rf , where ω (y) is the portfolio choice conditional

on the signals and rf is the risk-free interest rate.

We consider cases in which the investor has either mean-variance utility or CARA utility.

The investor's ex-ante utility is given by the expectation taken over the joint distribution of

returns and signals:6

U = E
[
E [Rp|y]− γ

2
V ar [Rp|y]

]
Mean-variance preference (5)

U = −1

γ
log [E [exp (−γRp)]] CARA preference (6)

3. The Portfolio Decision

3.1 Optimal Portfolio Weights and the Precision Matrix

We solve the model backwards starting from the period t = 2 asset allocation problem.

The investor takes as given the signals produced by the analysts, and the optimal portfolio

weights are obtained from the standard �rst-order condition:7

ω∗ (y) =
1

γ
(var (R|y))−1 (E (R|y)− rf ) . (7)

The posterior mean, E (R|y), and variance, var (R|y), of returns are obtained from Bayesian

updating. Their closed-form expressions are given by the following Proposition.

Proposition 1. Suppose that each analyst a = 1, ...,m produces a vector of signals ya =

r+ua1 + εa about asset returns R = R̄+ r+ η. Let the distributions of the random variables

be given by: r ∼ N(0,Σl), η ∼ N(0,Σu), ua ∼ N (0, φ−1
a ), and εa ∼ N(0, (τadiag (θa))

−1),

where each distribution is mutually pairwise independent and R̄ = E(R). Then each analyst

produces a quantity Θa = τa

(
diag(θa)− τa

τa+φa
θaθ
′
a

)
of information about asset returns, and

6See appendix B.1 for this derivation.
7The portfolio wights are the same for both preferences because we normalize prices and investor wealth

to one. See appendix B.1 for details.
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the precision matrix of signals is given by:

Θ =
m∑
a=1

Θa. (8)

Moreover, the posterior mean and variance of asset returns is given by:

var(R|y) = Σ̂ (Θ) = Σu +
(
Θ + Σ−1

l

)−1

E(R|y) =
(
Θ + Σ−1

l

)−1

(
m∑
a=1

Θaya

)
+ R̄.

(9)

All proofs are in the Appendix. The Proposition highlights the importance of the preci-

sion matrix, Θ, in the investor's posterior beliefs and asset allocation decision. Critically, as

Θ becomes �larger� or �more informative�, the posterior variance declines and the posterior

mean assigns more weight to the analyst signals (relative to the prior mean of E(r) = 0).

This, in turn, re�nes the investor's asset allocation decision. Later in the paper, we show

that more informative Θ's strictly increase the investor's ex-ante utility, and hence Θ plays

a key role in the period t = 1 information production decision as well.

The precision matrix, Θ, is intricately linked to the degree of relative valuation in the

economy. To see this, note that Equation 8 can be re-written as follows:

Θ =
m∑
a=1

 φa
τa + φa

[τadiag(θa)]︸ ︷︷ ︸
absolute valuation

+
τa

τa + φa
[τa (diag(θa)− θaθ′a)]︸ ︷︷ ︸

relative valuation

 . (10)

The �rst term in the summation, τadiag(τaθa), is a diagonal matrix with elements equal

to the precision added by analyst a about each asset i. This matrix captures the amount

of information produced about the level of asset returns. Due to the analyst-speci�c error

term ua, only a fraction φa
τa+φa

of this information is learned by the investor. In the extreme

case of absolute valuation (i.e, φa →∞), the precision matrix is given by:

ΘA =
m∑
a=1

τadiag(θa) : (absolute valuation case when all φa =∞). (11)
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The second term in the summation, τa (diag(θa)− θaθ′a), is a square matrix with column

and row sums adding up to zero. For a �xed analyst, this matrix captures the amount of

information produced about the relative value of the assets. Moreover, if an analyst only

covers one asset, then the amount of information she produces about the relative value of the

assets is zero.8 In the extreme case of relative valuation (i.e, φa = 0), the precision matrix

contains is given by:

ΘR =
m∑
a=1

τa (diag(θa)− θaθ′a) : (relative valuation case when all φa = 0). (12)

Whenever the analysts are symmetric (i.e., τa = τ and φa = φ for all a), the precision

matrix can be expressed as a convex combination of the absolute and relative valuation cases:

Θ∗ =

(
φ

τ + φ

)
ΘA +

(
τ

τ + φ

)
ΘR. (13)

3.2 Understanding the Portfolio Decision - Relative Valuation

We now analyze in more detail the investor's portfolio choice for the case of relative valuation:

φa = 0 for all a.9 We begin by establishing a useful connection between relative valuation

and the network induced by the allocation of analysts to assets. We then show that this

network determines how the investor learns from observable signals, in addition to how she

reallocates her capital across the assets. Knowing these facts are crucial for understanding

the investor's optimal allocation of analysts to assets in period t = 1.

8Consider an allocation {θia}ai in which each analyst a produces information about just one asset i:

for all a: θia ∈ {0, 1} subject to
∑
i

θia = 1.

In the case of absolute valuation, the investor learns a total of
∑

a τaθia information about each asset.

In the case of relative revaluation, the investor does not learn any information about any of the assets:

diag(θa)− θaθ′a = 0 ∀a. Economically, this allocation is useless to the investor because she does not have a

�benchmark� to compare each analyst's signal to. She cannot separate the information about returns from

the analyst-speci�c errors embedded within the signals.
9We analyze the less interesting case of absolute valuation in Section ??.
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3.2.1 The Information Production Network

The information production network is de�ned as the graph, G, where the vertices, V (G),

are the n assets and the edges, E(G), are the pairs of distinct assets that are covered by

at least one common analyst.10 Two assets i and j are adjacement in the network, i ∼ j,

if there is a common analyst covering both assets - i.e., i and j are joined by an edge.

More generally, two assets i and j are connected in the network if there exists a set of �rms

i = l1, ..., lN = j such that lk−1 ∼ lk for k = 1, ..., N . Connected assets that are adjacent are

considered directly connected, while connected assets that are non-adjacent are considered

indirectly connected. Only connected assets can be compared in a relative valuation setting.

Connections between assets facilitate the �ow of information throughout the network.

To measure the strength of direct connections between pairs of assets, we de�ne the n × n
weighted adjacency matrix, A(G), as follows:

A(G)ij =

0 for i = j∑
a τaθiaθja for i 6= j

The value of A(G)ij is increasing in (1) the number of common analysts covering both assets

i and j and (2) the amount of analyst precision allocated to covering both assets. The matrix

has null entries along its diagonal, and assets which are non-adjacent also satisfy A(G)ij = 0.

The weighted adjacency matrix can be used to measure the strength of indirect connec-

tions in the network as well.11 To see this, let
[
Ak
]
ij
denote the ijth element of A(G) raised

to the kth power. A well-known result from graph theory (e.g., Newman (2010)) states that[
Ak
]
ij
is equal to the weighted number of paths of length k connecting vertices/assets i and

j. Therefore, the sum
∑∞

k=1

[
Ak
]
ij
measures the strength of indirect connections between

assets i and j in the network. Similarly,
∑∞

k=0

[
Ak
]
ij
measures the strength of all (direct

and indirect) connections between i and j in the network.

10Formally, let Aij = {a ∈ A : i ∈ Na and j ∈ Na } denote the set of all analysts covering both �rms i
and j, where Na = {i : θia > 0} is the set of all assets covered by analyst a. The graph G consists of a set

of vertices V (G) = N ≡ {1, ..., n} and a set of edges E(G) = {{i, j} ∈ N ×N : i 6= j and Aij 6= ∅} .
11Two non-adjacent assets i and j can be indirectly connected if, for example, there is an asset l such

that i ∼ l and j ∼ l. More generally, two non-adjacent assets are indirectly connected if there is a sequence

of assets l1, ..., lk, such that i ∼ l1, l1 ∼ l2, ... , lk−1 ∼ lk, lk ∼ j.
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We de�ne the degree of an asset i as d(i) =
∑

j A(G)ij and we de�ne the n × n degree

matrix as D(G) = diag(d(1), ..., d(n)). Finally, we de�ne the n × n (weighted) Laplacian

matrix, L(G), as the di�erence between the degree matrix and the weighted adjacency matrix:

L(G) = D(G)− A(G).

It is immediate to verify that the Laplacian matrix is equal to the precision matrix in the

case of relative valuation:12

ΘR = L(G) =
∑
a

τa (diag(θa)− θaθ′a) .

These connections to graph theory will allow us to better our understanding of how the

investor incorporates the signals into her posterior beliefs and portfolio decision. Further

details are provided below.

3.2.2 Implications for Learning - Relative Valuation

The following Proposition allows us to interpret the posterior

Asset Correlations: The following proposition is helpful in interpreting the posterior

correlations among assets in terms of the strength of connections between �rms in the analyst

coverage network A(G).

We show below that relative valuation creates positive correlation among assets. More-

over, we also show that posterior correlations among assets i and j are larger when the direct

link between the two assets (as given by the weights Aij =
∑

a τaθiaθja) are strong plus there

are many indirect links connecting the two assets.

Proposition 2. Let Σ = diag(σ2
1, ..., σ

2
n) and posterior variance matrix var (R|y) = Σ̂ =

(Σ−1 + Θ)
−1
, where Θ =

∑
a τa (diag(θa)− θaθ′a) and let A = Θ− diag(Θ) be the adjacency

matrix (also given by Aij =
∑

a τaθiaθja, for i 6= j). Then:

(i) The posterior correlations among assets are non-negative Σ̂ij ≥ 0, for all i and j, and

moreover, Σ̂ii ≥ Σ̂ij;

12Note that D(G) = diag(ΘR) because d(i) =
∑

j A(G)ij =
∑

a τaθia
∑

j θja =
∑

a τaθia −
∑

a τaθ
2
ia, and

that A(G) = diag(ΘR)−ΘR.
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(ii) The posterior variance can be expressed as Σ̂ = N−1/2

(
∞∑
k=0

Ak

)
N−1/2, where A =

N−1/2AN−1/2 is the normalized adjacency matrix, and N = Σ−1 + diag(Θ) is a normalizing

diagonal matrix.

Thus the stronger (weaker) is the connection between two �rms i and j, the larger (smaller)

is the posterior correlation among i and j.

The Proposition above essentially uses that (I −A)−1 =
∑∞

k=0 A
k which holds when all

eigenvalues of A have norm less than one which we show holds in the proof (i.e., ρ(A) < 1).

Moreover, we know from graph theory (see for example, Newman (2010)), that the number

of paths of length k connecting two vertices i and j is given by
[
Ak
]
ij
(i.e., the ijth element of

the kth power of the adjacency matrix A) and that the sum
∑∞

k=0

[
Ak
]
ij
is the total number

of paths connecting i and j.

Thus Proposition 2 formally shows that we can interpret the posterior correlations be-

tween assets i and j as larger (or smaller) depending on how strong (or weak) are the

connection between i and j, as measured by the number of the paths connecting i and j in

the graph with adjacency matrix A.

Posterior Expected Returns: The posterior mean of returns (9) can be expressed

also as the sum of each analyst signal averaged by the precision of each signal multiplied by

the posterior variance:

E(R|y) = Σ̂

(
m∑
a=1

Θaya

)
+ R̄,

We now show that how investor update the mean returns after observing investors' signals

depend both on direct and indirect connections. The posterior expected return of asset i

is greater when either asset i receives a favorable analyst recommendation yia, or when an

asset j, which asset i is strongly connected to, receives a favorable analyst recommendation

yja. In other words, each signal provided by the analysts a�ects the expected returns all the

assets for which they cover. We state this result below.
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Proposition 3. The sensitivity of returns to asset recommendations satisfy

∂E (R|y)j
∂yia

= τaθia

(
Σ̂ji −

∑
k

Σ̂jkθka

)
.

The following comparative statics results hold:

(i) The asset i return increase when any analyst following asset i revise it upwards. That is
∂E(R|y)i
∂yia

≥ 0.

(ii) When the strength of the connection between asset j and asset i is stronger (weaker)

than the average strength of the connection among asset j and the other assets covered by

analyst a, then asset j return increases when an analyst a revise asset i upwards. Formally,
∂E(R|y)j
∂yia

≷ 0 if and only if Σ̂ji ≷
∑

k Σ̂jkθka.

3.2.3 Implications for Portfolio Choice

We now show how the information network provides insight about how capital is reallocated

in response to asset recommendations. Remind that capital is reallocated based on the

information produced as follows:

∂ω∗ (y)

∂yia
=

1

γ

(
Σu + Σ̂

)−1 ∂E (R|y)

∂yia
. (14)

In the information network graph G, two �rms i and j are de�ned as connected if and only

if there is a path connecting them. That is, there is a distinct set of �rms i = i0, i1, i2, ...im = j

such that ik−1 and ik share a common analyst for k = 1, ...,m. Note that connection we

formally de�ne before is an equivalence relation. A graph, G, is connected if any two �rms

can be joined by a path, and is otherwise disconnected. A maximal connected subgraph of

the graph is de�ned as a (connected) component, where a subgraph is any graph S formed

from a subset of the vertices and edges of G. We will also refer to the components of the

graph as the maximal equivalence classes of the connection relation.

We show below that no capital �ows in or out of the separate connected components of

the information production network. This result directly relates to the concept of relative

valuation. Since asset analyst recommendations have no level anchor, investors can only
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make inferences about the relative value of assets that are evaluated by the same analyst

or through a chain of analysts. For example, suppose the assets in one component receive

on average more positive signals than the assets in second component Then investors are

unable to infer whether the assets in �rst component have higher expected returns, or if

the signals produced in second component have a di�erent level, i.e. information produced

by completely disconnected information sources cannot be combined. Only when there is a

connection between the assets can inferences be made about expected returns and wealth

reallocated.

Proposition 4. (Wealth Reallocations) Consider the pure relative valuation setting with

Σu = (1− α) Σ and Σl = αΣ, for some α ∈ [0, 1] , which includes the full-learnable case.

Then:

(i) The assets can be partitioned into connected (and disjoint) components of the graph G

de�ned above;

(ii) There is no reallocation of wealth among disconnected components. Formally, let ω(y) be

the optimal portfolio choice upon learning signal y and let ωno−learn be the portfolio choice

under no learning. The wealth allocated to each connected component, say component G,
satisfy

∑
i∈G ω(y) =

∑
i∈G ω

no−learn
i , for all possible signals y;

(iii) In particular, there is no reallocation of wealth between risky and riskless assets, i.e.∑
i∈N ω(y) =

∑
i∈N ω

no−learn
i for all signals y.

In the knife-edge case of full learning, the wealth reallocations take a particularly simple

form because
(

Σu + Σ̂
)−1

Σ̂ = I when Σu = 0. In response to a signal received by analyst a

for asset i, the optimal investment on assets j 6= i is

∂∆ωj
∂yia

= −1

γ
τaθiaθja ≤ 0 and

∂∆ωi
∂yia

=
1

γ
τa
(
θia − θ2

ia

)
≥ 0. (15)

From equation (15) there is a reallocation of wealth across assets in response to signals in

the presence of relative valuation. In particular, in response to a signal received by analyst a

for asset i 6= j, the optimal loading on asset j marginally decreases. Note that the decrease
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is larger the more analyst a follows both assets i and j, and if the analyst does not follow

both assets there is not reallocation between the assets.

Therefore the intensity of capital reallocation depends on the strength of the analyst

following connection between assets. Whenever, the information between the pair of assets i

and j, τaθiaθja is high, good news about asset i leads the investor to pull more capital from

asset j.

To conclude this section, no capital �ows across connected components. In addition, the

extent of intra-component capital reallocations depends on both the strength of connections

and the value of asset recommendations. A favorable signal about a �rm propagates through-

out the entire component, and causes capital to reallocate to the assets in the component to

which the �rm shocked is most closely connected.

4. Investors Ex-ante Preferences over Alternative Infor-

mation Production Networks

In the this section we focus on characterizing the investor ex-ante utility associated with allo-

cations of information producing resources. Speci�cally in the Proposition 5 below we obtain

the ex-ante expected utility and show that it depends essentially only on the information

matrix Θ for both the CARA and mean-variance investor.

Proposition 5. Let the prior excess return vector be µ = R̄ − rf1 and variance of returns

R ∼ N
(
R̄,Σ

)
with learnable and unlearnable variances Σl and Σu.Whenever the information

matrix about the learnable component is Θ, so that the posterior precision is Σ̂−1 (Θ) =(
Σu +

(
Σ−1
l + Θ

)−1
)−1

, then the ex-ante investor utility is:

(i) In the CARA preference case, the ex-ante utility is

U (Θ) =
1

2γ

(
log det

(
Σ̂−1 (Θ) Σ

)
+ µ′Σ−1µ

)
. (16)

(ii) In the mean-variance preference case, the ex-ante utility is

U (Θ) =
1

2γ

(
Tr
(

Σ̂−1 (Θ) Σ
)

+ µ′Σ̂−1 (Θ)µ− n
)
. (17)
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Note that in full learning case, i.e. Σu = 0, the posterior precision is simply Σ̂−1 (Θ) =

Σ−1 + Θ, and thus linear in the information matrix Θ. Moreover, in the mean-variance

preference case with full-learning, the ex-ante utility is also linear in the information matrix,

U (Θ) =
1

2γ

(
Tr (ΘΣ) + µ′Θµ+ µ′Σ−1µ

)
. (18)

Thus, the investor optimal solution in this special case is determined without any regards

for interdependencies among analysts' choices.

In all other cases, there are important interdependencies among analysts' information

production choices. We show below the posterior precision matrix Σ̂−1 (Θ) and the investor

ex-ante utility U(Θ) are strictly monotonic and strictly concave mappings of the information

matrix Θ. We introduce below de�nitions to formalize these concepts:

• (Informativeness) Matrix Θ is more informative than Θ∗, i.e. Θ � Θ∗, if the matrix

Θ−Θ∗ is positive semide�nite.

• (Concavity) The utility function and posterior precision mapping are concave if U(Θλ) ≥
λU(Θ)+(1− λ)U(Θ∗) and Σ̂−1 (Θλ) � λΣ̂−1 (Θ)+(1− λ) Σ̂−1 (Θ∗) , for any λ ∈ [0, 1]

and Θλ = λΘ + (1− λ) Θ∗.

• (Monotonicity) The utility function and posterior precision mapping are monotonic if

U(Θ) ≥ U(Θ∗) and Σ̂−1 (Θ) � Σ̂−1 (Θ∗) , for any Θ � Θ∗.

We provide more details in the Appendix B, including the natural extensions to strict

concavity and monotonicity.

Lemma 1. Consider the posterior precision mapping Σ̂−1 (Θ) =
(

Σu +
(
Σ−1
l + Θ

)−1
)−1

and

the ex-ante utility U(Θ). Then:

(i) The posterior precision mapping is strictly concave and strictly monotonic in the partial

learning case (with Σu and Σl invertible); and it is linear and strictly monotonic in the full

learning case (with Σu = 0).

(ii) The investor ex-ante utility function U(Θ) of a CARA or mean-variance investor is

strictly monotonic and strictly concave in the information matrix Θ [except that in the mean

variance and full learning case Σu = 0, it is linear in the information matrix Θ].
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The strict concavity for the CARA utility arises both from the strict concavity of the

log determinant mapping X � log det(X) and the strict concavity of the posterior precision

with partial learning, while the stricty concavity for the mean-variance utility arises only

from the latter.

We will show later on how these general strict monotonicity and concavity properties

imply the strict optimally of balanced designs among analysts (see Section 6).

Rather than use the investor utility directly, it will save on notation going forward to

focus on the utility gain relative to no-information learning,

U (Θ) = U (Θ)− 1

2γ
µ′Σ−1µ, (19)

subtracting away the constant utility term 1
2γ
µ′Σ−1µ due to no-learning.

The evaluation of investor utility in applications is made easier by the following result

which provides the investor utility gain as a function of the eigenvalues of the weighted

information matrix ΘΣ.

Lemma 2. Consider the partial learning setting, Σu = (1− α) Σ and Σl = αΣ, for some

α ∈ [0, 1]. De�ne the strictly increasing and concave function f(x) by

f(x) =
1 + αx

1 + α (1− α)x
. (20)

The ex-ante utility gain, in the CARA preference case, is

U (Θ) =
1

2γ

n∑
i=1

log f(λi). (21)

where λi ≥ 0 are the eigenvalues of the weighted information matrix ΘΣ.

The proof is in the Appendix, where we also provide the similar expression for the mean-

variance case in terms of the eigenvalues of the weighted information matrix.
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5. Relative versus Absolute Valuation

In this section we contrast the properties of information production under relative and ab-

solute valuation. To keep the analysis as simple as possible and better provide the intuition

for the results we consider the mean-variance preference and full-learning in this section.

5.1 Broad Coverage versus Specialization Decision

Using the properties that the relative valuation component of the information matrix is the

Laplacian of the graph we can establish a series of identities that gives us a more intuitive

understanding of the how relative valuation works.

Proposition 6. Suppose an analyst produce information about q assets i = 1, ..., q with

attention θ and precision φ and τ , so that the precision matrix is Θ = τ
(
diag(θ)− τ

τ+φ
θθ′
)
.

Then the incremental utility gain, U = 1
2γ

(Tr (ΣΘ) + µ′Θµ) , can be expressed as

U =
1

2γ

τ
q∑

i,j=1:i<j

θiθj
[(
var(ri − rj) + (µi − µj)2)]

︸ ︷︷ ︸
UR

τ

φ+ τ
+ τ

2∑
i=1

θi
(
var(ri) + µ2

i

)
︸ ︷︷ ︸

UA

φ

φ+ τ

 .
(22)

The utility gain is the weighted average of the gain coming from absolute valuation and

relative valuation related to the respective components of the precision matrix. Intuitively,

under relative valuation the utility gain is proportional to the sum of variances of the long-

short portfolio comparing all pair of assets weighted by the precision θiθj allocated to the

pair. These results follow directly from the fact that the precision matrix ΘR is the Laplacian

matrix of the information production network.

We now show that relative valuation increases the gains of diversi�cation in the pro-

duction of information. Consider a symmetric setting such as an industry with variance

Σ = σ2 (I + ρJ) and equal excess returns µ = R̄i − rf so that var(ri − rj) = 2σ2 and

(µi − µj)2 = 0 for all pair of assets. This implies that the summation appearing in the
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expression for the utility gain is

q∑
i,j=1:i<j

θiθj
[(
var(ri − rj) + (µi − µj)2)] = σ2

q∑
i,j=1:i<j

2θiθj = σ2

( q∑
i=1

θi

)2

−
q∑
i=1

θ2
i

 .
Since

∑q
i=1 θi = 1 then the optimal time allocation problem is the unique solution of:

maxθ 1−
∑q

i=1 θ
2
i

s.t.
∑q

i=1 θi = 1 and θi ≥ 0
.

Therefore spreading out equally the time allocation to each asset, θi = 1
q
, is a unique global

optimal allocation of time by each analyst whenever relative valuation is important (i.e.,

φ <∞). The maximum value is σ2
(

1−
∑q

i=1
1
q2

)
= σ2

(
q−1
q

)
. Note that the time allocation

above is the unique optimal regardless of the choice of precision φ and τ. The proposition

below makes this point formally.

Proposition 7. Consider the optimal information production design of a mean-variance

investor and the assets have covariance Σ = σ2 (I + ρJ) and equal excess returns µ = R̄i−rf ,
and analyst can cover up to q assets with precision τ and φ at a convex cost c (τ, φ). Then

the analyst optimally spread their allocation of time equally across all q assets, i.e., θia = 1
q
,

and the optimal relative and absolute valuation precision φ∗ and τ ∗ are given by the unique

global solution of the utility maximization problem

U =
τ

2γ

((
σ2 (1 + ρ) + µ2

) φ

τ + φ
+ σ2

(
q − 1

q

)
τ

τ + φ

)
− c (τ, φ)

subject to τ, φ ≥ 0. Moreover, whenever φ∗ < ∞ this information production choice is the

unique global optimum.

With absolute valuation the gain in utility is composed of the sum of the utility com-

ing from µ′ΘAµ, which is equal to τµ2, and the gain in utility coming from Tr(ΣΘA) =

τσ2 (1 + ρ) which is the total volatility times the total precision. With strict relative valu-

ation the gain in utility is Tr(ΣΘR) = τσ2
(
q−1
q

)
equal to the idiosyncratic asset volatility
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times the total precision times the fraction
(
q−1
q

)
lost due the fact that only relative signals

have information. For intermediate cases the utility gain is the average of the absolute and

relative valuation cases with weights respectively φ
τ+φ

and τ
τ+φ

.

The results above illustrate that in general it will be optimal for an analyst to sacri�ce

some specialization and precision in exchange for a broader and (more imprecise) asset

coverage. The utility gain attributed to the relative valuation is proportional to τ ×
(
q−1
q

)
.

Thus if analysts could cover more assets without any overall precision loss there would be an

utility gain. However, the marginal gain is decreasing with the asset coverage. In particular,

increasing coverage from 2 to 3 assets increases utility from τ ×
(

1
2

)
to τ ×

(
2
3

)
, which is an

utility gain of 33%, but the utility gain from increasing coverage from 9 to 10 assets would

only be 1%.

More generally it is likely that the overall precision is decreasing in the total number of

assets covered as information production is likely to have substantial �xed costs associated

with leaning about a particular �rm. Speci�cally, let us assume that the total analyst

precision is decreasing in the number of assets covered, τ ′(q) < 0, then the decision of how

many �rms to cover would be determined by maxq τ (q)×
(
q−1
q

)
. The �rst order condition

yields that the optimal quantity is a declining function of the precision elasticity, q∗ =

1− (∂log(τ(q))/∂log(q))−1 . In particular, if the total quality of the information decays very

slowly, the analyst will optimally choose to cover a large number of �rms.

5.2 Asymmetric Assets: Long-Short Portfolios

We now address the optimal design under asymmetric assets in the mean-variance utility

case. We focus on the case that the analyst can only choose two assets, where the investor

expected utility is as follows

U =
1

2γ

τθiθj [(var(ri − rj) + (µi − µj)2)]︸ ︷︷ ︸
UR

τ

φ+ τ
+ τ

(
N ‘∑
i=1

θi
(
var(ri) + µ2

i

))
︸ ︷︷ ︸

UA

φ

φ+ τ

 ,

In the case where there is only relative valuation the analyst choose the assets i and j
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to cover, and always optimally choose to dedicate equal attention to them, i.e. θi = θj = 1
2
,

and choose the pair of assets in order to maximize maxi,j var(ri − rj) + (µi − µj)2 , i.e. the

pair of assets with the long-short portfolio with the largest (uncentered) second moment. In,

contrast in the case of absolute valuation, the analyst should dedicate all attention to the

asset that maximizes maxi var(ri) + µ2
i . In the Appendix B, we generalize this result for a

setting where the analyst covers more than two assets (q > 2).

6. Optimality of Balanced Designs

Having studied in Section 5 the problem of how to allocate one single information production

unit, now we study the problem of how to design the entire information production network.

We show that relative valuation introduces a strong force for balancedness in the network.

We start by showing that when the �rms are symmetric, the optimal network has exactly

the same number of analysts covering any pairs of stocks, i.e. the network is said to be

balanced. We then extend our analysis to show this property holds even in less symmetric

environments. Speci�cally, we show that in a multi-industry setting that the information

production network is block balanced, with intra-industry pairs having more analyst coverage

than across-industry pairs.

6.1 Balanced Designs

We �rst start introducing the formal de�nition of balanced allocation.

De�nition: (Balanced Network) Consider a triple (n,m, q) where n denotes the number

of assets, m the number of agents, and q < n the maximum number of assets that an agent

can cover. Let Na be the subsets of assets that agents a = 1, ...,m are covering. We say that

the coverage is balanced, or a balanced design, if all subsets Na have exactly q assets, and

every pair of assets is covered by exactly λ agents.

Consider the following example to illustrate this point.

Example 1: Consider a symmetric economy with n = 6 assets and m = 10 ana-

lysts which can cover q = 3 assets, and let the matching of analysts to assets be A =

{123, 124, 135, 146, 156, 236, 245, 256, 345, 346} , where we denote the subset of assets followed
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by each of the m = 10 analysts by triples abc. The structure is a balanced design with λ = 2

analysts covering each pair of assets. Note that each asset is followed by exactly c = 5

analysts. There can be multiple structures with the same allocation of analyst coverage per

asset but with variation in the amount of analyst coverage per pair. For example consider the

allocation allocation of resources B = {123, 123, 123, 123, 123, 456, 456, 456, 456, 456}. The

total utility of investors with the �rst structure, the balanced alloaction, is more than 25%

higher than the second structure (see details in Appendix B).

A central results of our paper is that the maximization of investor's utility is uniquely

achieved with balanced allocations of information production resources.

Proposition 8. (Optimality of symmetric balanced designs) Consider the symmetric problem

above where the investor have CARA preference (with full or partial learning) or mean-

variance preference (with partial learning) with n assets and m agents that can cover q ≤ n

assets with prior return R − rf1 ∼ N (µ1,Σ) where Σ = σ2I + σ2
fJ such that there exists

a balanced design.Then the most e�cient allocation among all possible feasible allocations

is a balanced design in which all analysts choose the same precision τ and φ. Whenever at

the optimum φ <∞, then the balanced design is the unique maximum e�cient allocation of

resources.

We establish in our next result the closed-form solution for the investor utility under

CARA preferences when using a balanced allocation of information production resources.

Proposition 9. (Investors' utility under a balanced design) Suppose the investor has CARA

preference, there are n assets with prior excess return with variance Σ = σ2 (I + ρJ),

and full or partial learning with Σu = (1− α) Σ and Σl = αΣ, for some α ∈ [0, 1].

Suppose that all m analysts choose precision τ and φ and each can produce information

about q assets and let the agents be organized according to a balanced design with λ =
mq(q−1)
n(n−1)

analysts per pair of assets, and c = mq
n

analysts per asset. Then:

(i) The precision of the signal obtained by investors is the n× n matrix Θ equal to

Θ =
τm

n

[
φ

τ + φ
I +

τ

τ + φ

n (q − 1)

(n− 1) q

(
I − 1

n
J

)]
, (23)

where I and J are, respectively, the n× n identity matrix and matrix of ones in all entries.
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(ii) The expected investor utility gain with a balanced design is equal to:

U (τ, φ) =
1

2γ
((n− 1) log (f (λ1)) + log f (λ2)) (24)

where f (·) is give by equation (20), and λ1 and λ2 are the eigenvalues of the weighted

information matrix ΘΣ given by:

λ1 (τ, φ) = σ2m

n

τ

τ + φ

(
φ+ τ

n (q − 1)

(n− 1) q

)
: (with multiplicity n− 1), (25)

λ2 (τ, φ) = σ2m

n

τφ

τ + φ
(1 + nρ) : (with multiplicity 1).

(iii) There is a unique τ ∗ and φ∗ that maximize the utility net of costs U (τ, φ) −mc (τ, φ)

given by (24) subject to τ, φ ≥ 0. This solution is such that:

(a) an increase in q leads to more weight being placed on relative valuation ∂
(
τ∗

φ∗

)
/∂q ≥ 0;

(b) an increase in asset correlation ρ leads to less weight being placed on relative valuation

∂
(
τ∗

φ∗

)
/∂ρ ≤ 0.

The optimal precision τ ∗ and φ∗ maximize the utility U (τ, φ) given by (24) subject to

τ, φ ≥ 0. Any other allocation with an information matrix di�erent than the one given by

(23) yields strictly less utility to the investor.

Note that the term (q−1)
q(n−1)

multiplying the relative valuation part of the information

matrix is increasing in q, the number of assets analyst can follow. Thus if analyst can spread

out the same total precision τ across multiple assets the information matrix becomes more

informative. However, the rate of utility gain is decreasing in the number of assets covered

and for a large number of assets q, such as q = 10 assets, over 90% of the possible gains are

already achieved.

6.2 Information Production within and across Industries: Block

Balanced Designs

While analysts tend to be industry specialists, there is also a signi�cant across-industry

coverage by analysts. For example, Boni and Womack (2006, Table 3) document that sell-
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side analysts cover approximately 10 �rms and, on average, 76% of the companies covered

by an analyst are in the same industry. We show now that relative valuation provides a new

rational for the existence of across-industry analyst coverage.

We assume that analysts have to spend a �xed amount of time to understand an industry

in order to produce an informative signal about assets belonging to that industry. This �xed

production cost generate incentives to become industry specialists, and we show that, in the

case of absolute valuation, analysts would be fully specialized in an industry. However, in

the context of relative valuation, there are incentives for some analysts to follow assets across

industries, otherwise di�erent industries would be in separate disconnected components, and

investors would not be able to make signi�cant reallocations or comparisons across industries.

To formalize the concepts, in a simple setting suppose there are two industries each

with nj �rms in each industry, and returns are Rij = εij + fj + f, where fj is a common

industry factor and f is a common aggregate factor, and εij are idyiosincratic risks with

the same variance. Assume that analysts can only produce signals for assets after spending

time to learn about each industry the assets covered belong; and there is a decay in total

analyst precision as she covers more industries since there is less time remaining to learn

about individual assets. Formally, if the q assets covered by the analyst are in nI di�erent

industries, the total precision is τ (1− nIκ) and the information matrix contributed by each

analyst in the absolute and relative valuation cases are, respectively

Θa = τ (1− nIκ) diag(θa) (absolute valuation)

Θa = τ (1− nIκ) (diag(θa)− θaθ′a) (relative valuation)

Proposition 10. Consider a setting where: (i) the investors either have a CARA preference

(with full or partial learning) or mean variance preference (with partial learning); (ii) there

aretwo industries j = 1, 2 each with nj �rms; (iii) returns are Rij = εij + fj + f, where fj is

a common industry factor and f is a common aggregate factor; and (iv) there are m analysts

producing information about q assets with total precision τ (1− κ) or τ (1− 2κ) depending

on whether assets covered belong to one or two industries. Then:

(i) In the absolute valuation setting, all analysts are industry specialists if κ > 0.
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(ii) In the relative valuation setting, there will be always be some cross-industry analysts

if there are enough analysts (formally, for each κ > 0, there exists m such that there are

cross-industry analysts for all m ≥ m ).

In the absolute valuation setting, there is no role for cross-industry analysts. And to the

extent that covering assets in multiple industries reduce the overall precision of the assets

covered we would not expect in the model above cross-industry coverage to exist.

The proof essentially consist of analyzing the eigenvalues of ΘΣ, which by Lemma 2

determines the utility gain. Any allocation without cross-industry analysts result in infor-

mation network with at least two disconnected components, and the weighted information

matrix ΘΣ has at least two zero eignenvalues. Cross-industry analysts, by connecting the

industries, add another strictly positive eigenvalue. The marginal bene�ts of each industry

analyst converges to zero as the number of analysts increase, thus the addition of cross-

industry analysts strictly dominates a structure with only industry analysts, with a large

enough number of analysts.

Example: block balance This example illustrates that the coverage choice can be

important part of the analyst contribution to investors. Consider the following information

production structures with 4 analyst covering 8 assets A = {1234, 1234, 5678, 5678} . A �fth

analyst that can cover q = 4 assets can choose to cover assets 1234 (or 5678) such as the

other 4 analysts, or assets 1235, or cover assets 1256. We show below that the later choice

is the optimal choice and the one that maximizes investors' welfare. This choice improves

the connectivity among assets the most and leads to a more balanced coverage with more

interconnection among assets.

Using the parametrization
(
v = 2, α = 1

2
, φ = 10, τ = 10

)
the following are the associated

investors' utility with each structure:

∆U (A+ 1234) = 0.226

U (A) = 4.285→∆U (A+ 1235) = 0.465

∆U (A+ 1256) = 0.525

An analyst by making choices that are more balanced, can improve the connectivity of assets
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and the performance of relative valuation. The more balanced choice can more than double

her potential contribution to investors as illustrated above.

7. Conclusion

In this paper, we study the implication of relative valuation for how information is processed

and how information producing resources should be organized. We study this problem from

the perspective of an investor that must decide how to produce and aggregate information.

The investor problem starts with the problem of how to allocate analysts to �rms. Relative

valuation implies that the production of information depends not only of the total number

of hours analysts spend researching each �rm, but on the entire information production

network, the bipartite graph where the vertices are the �rms and the edges are all the pairs

of distinct �rms that are covered by at least one common analyst. The entire information

production network matters because it changes the information content of a signal produced

by a particular information source.

We then use our framework to derive implications for portfolio choice and the optimal

organization of the information production network. We �nd that relative valuation is a

strong force for diversi�cation in information production.
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A. Appendix

Appendix A: Proofs

Proof of Proposition 1: We can write the signals in vector form as y = Xr + ς where
ς = Bu+ε, by stacking up all analyst signals. Let the nm×n dimensional indicator matrices
X = 1m⊗ In (the Kronecker product of the vector of m ones and the n-dimensional identity
matrix) and the nm×m dimensional indicator matrix B = Im⊗1n. The signal distribution,
conditional on the return r, is:

y ∼ N (Xr,Σς)

where
Σς = BΣuB

′ + Σε and Q = Σ−1
ς

Moreover,
r ∼ N (0,Σl)

Lindley and Smith (1972) prove that the distribution of r, given y, is

r|y ∼ N (Zw,Z)

with

Z−1 = X ′Σ−1
ς X + Σ−1

L

w = X ′Σ−1
ς y

Rewriting we get

var(r|y) =
(
X ′QX + (Σl)

−1
)−1

E(r|y) =
(
X ′QX + (Σl)

−1
)−1

X ′Qy.

which implies (9).
By a similar argument we obtain the posterior distribution for u. Let y = Bu+ δ where

δ = Xr + ε with variance Σδ = X ′ΣlX + Σε. We have that y ∼ N (Bu,Σδ) and that
u ∼ N (0,Σu) . Applying Lindley and Smith (1972) theorem yields u|y ∼ N (Td, T ) where
T−1 = B′Σ−1

δ B + Σ−1
u and d = B′Σ−1

δ y. Thus

var(u|y) =
(
B′Σ−1

δ B + Σ−1
u

)−1

E(u|y) =
(
B′Σ−1

δ B + Σ−1
u

)−1
B′Σ−1

δ y.

with Σ−1
δ = (X ′ΣlX + Σε)

−1 .
Note that if we ignore the prior distributions for r and u (i.e., consider uninformative
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priors with Σ−1
u → 0 and Σ−1

l → 0), we get the classical GLS estimates for r and u :

var(rGLS) = (X ′Q1X)
−

rGLS = (X ′Q1X)
−
X ′Q1y,

where
Q1 = Σ−1

ε − Σ−1
ε B

(
B′Σ−1

ε B
)−1

B′Σ−1
ε .

Note that by the Woodbury formula

Q1 = lim Σ−1
ς = lim (BΣuB

′ + Σε)
−1

= lim Σ−1
ε − Σ−1

ε B
(
Σ−1
u +B′Σ−1

ε B
)−1

B′Σ−1
ε .

Also, the estimate for the analyst-speci�c component is

var(uGLS) = (B′Q2B)
−

uGLS =
(
B′Q2B + Σ−1

u

)−1
B′Q2y,

where
Q2 = Σ−1

ε − Σ−1
ε X

(
X ′Σ−1

ε X
)−1

X ′Σ−1
ε .

Again by the Woodbury formula

Q2 = lim Σ−1
δ = lim (X ′ΣlX + Σε)

−1
= lim Σ−1

ε − Σ−1
ε X

(
Σ−1
l +X ′Σ−1

ε X
)−1

X ′Σ−1
ε .

(ii) The matrix Q has a block diagonal structure Q = diag(Q1, ..., Qm), composed of the
m blocks given explicitly by the n× n matrices

Qa = τa

(
diag (θa)−

τa
φa + τa

θaθ
′
a

)
(26)

Indeed, let ζia = ua + εia, where cov(ζia, ζja) = φ−1
a for all i 6= j. In matrix no-

tation var (ζ) = Σε + BΣuB
′ where we remind that Σu = diag(φ−1

1 , ..., φ−1
n ) and Σε =

diag (Σ1, ...,Σm) with blocks Σa = τ−1
a diag

(
θ−1

1a , ..., θ
−1
na

)
. Therefore, the matrix Σε +BΣuB

′

is an nm× nm matrix with block diagonal structure with blocks of dimension n given by

τ−1
a diag

(
θ−1

1a , ..., θ
−1
na

)
+ φ−1

a 1n1′n.

Thus the matrix Q = (Σε +BΣuB
′)−1 also has a block diagonal structure. By the Sher-

man�Morrison formula each block Qa is

Qa = τadiag (θa)−
φ−1
a τ 2

a

1 + φ−1
a τa1′ndiag (θa) 1n

diag (θa) 1n1′ndiag (θa) ,

where diag (θa) = diag (θ1a, ..., θna) . Because 1′ndiag (θa) 1n = 1 and diag (θa) 1n = θa this
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yields equation (26).
Finally, to obtain the precision matrix Θ = X ′QX note thatX = 1m⊗In then Θ = X ′QX

becomes

Θ =
[
In · · · In

]  Q1 0 0
0 Qa 0
0 0 Qm


 In

...
In

 =
m∑
a=1

Q(a).

Therefore,

Θ =
m∑
a=1

τa

(
diag (θa)−

τa
φa + τa

θaθ
′
a

)
.

Observe that

diag (θa)−
τa

φa + τa
θaθ
′
a =

φa
τa + φa

diag (θa) +
τa

τa + φa
(diag(θa)− θaθ′a)

which shows that the information matrix can be expressed as the weighted sum:

Θ =
m∑
a=1

τa

[
φa

τa + φa
diag(θa) +

τa
τa + φa

(diag(θa)− θaθ′a)
]
.

Q.E.D.

Proof of Proposition 2: (i) Let N = Σ−1
l + diag(Θ), thus Σ−1

l + Θ = N − A and

Σ̂ = (N − A)−1.
Observe that N = diag(Θ) ≥ 0 and A ≥ 0. The matrix N−A is a nonsingularM -matrix.

Indeed, its o�-diagonal elements are non-positive and moreover, the matrix N −A is strictly
dominant diagonal,

(N − A)ii =
[
Σ−1
l

]
ii

+
∑
a

τa
(
θia − θ2

ia

)
>

>
∑
a

τaθia (1− θia) =
∑
a

∑
j 6=i

τaθiaθja =
∑
j 6=i

| [N − A]ij |.

Any nonsingular M -matrix is invertible and has a non-negative inverse, which proves
that the inverse of (N − A) exists and is nonnegative. In order to show that the inverse

satisfy Σ̂ii ≥ Σ̂ij for all i and j, we use the following lemma (Berman and Plemmons, 1994,
pp. 254): Let W be a nonsingular M -matrix whose row sum are all nonnegative. Then
V = (W )−1 satisfy Vii ≥ Vij for all i and j.

(ii) We can normalize Σ̂ multiplying by the diagonal matrix N−1/2,

Σ̂ = (N − A)−1 = N−1/2
(
I −N−1/2AN−1/2

)−1
N−1/2 = N−1/2 (I −A)−1N−1/2.
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But we established above that the spectrum radius of A is less than one, ρ (A) < 1, which
implies that

(I −A)−1 =
∞∑
k=0

Ak,

which completes the proof.
Q.E.D.

Proof of Proposition 3: The conditional return is given by E (R|y) = Σ̂ (
∑

Θaya) +

R̄, where Σ̂ =
(
(αΣ)−1 + Θ

)−1
, is a linear function of the asset recommendations. The

derivative with respect to yia is equal to

∂E (R|y)

∂yia
= Σ̂v

where v = [Θa]·i ∈ Rn is the i-th column of the matrix Θa = τa (diag(θa)− θaθ′a) . Thus
vj = −τaθiaθja for j 6= i and vi = τaθia (1− θia).

Therefore,

∂E (R|y)j
∂yia

=
(

Σ̂v
)
j

=
∑
k

Σ̂jkvk

= Σ̂jivi +
∑
k 6=i

Σ̂jkvk

= τaθia

(
Σ̂ji (1− θia)−

∑
k 6=i

Σ̂jkθka

)

= τaθia

(
Σ̂ji −

∑
k

Σ̂jkθka

)

Moreover,
∂E(R|y)j
∂yia

≷ 0 if and only if Σ̂ji ≷
∑

k Σ̂jkθka.Also
∂E(R|y)i
∂yia

= τia

(∑
k

(
Σ̂ii − Σ̂ik

)
θka

)
≥

0 because Σ̂ii ≥ Σ̂ik ≥ 0, which completes the proof.
Q.E.D.

Proof of Proposition 4: (i) In the information network graph G, two �rms i and j
are de�ned as connected if and only if there is a path connecting them. Connection is an
equivalence relation. A maximal connected subgraph of the graph is de�ned as a (connected)
component, where a subgraph is any graph S formed from a subset of the vertices and edges
of G. Each components of the graph is the maximal equivalence classes of the connection
relation.

Consider Gk a connected component. Let 1k ∈ Rn be vector with 1's for each asset
belonging to a connected component Gk and zero otherwise.
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We �rst show that
1TkΘ = 0 and 1TkΘa = 0.

for each conneted component.
(ii) The portfolio choice is

ω∗ (y) =
1

γ
(var (R|y))−1 (E (R|y)− rf ) . (27)

where the posterior mean E (R|y) and the variance var (R|y) are:

E(R|y) =
(
Θ + Σ−1

l

)−1

(
m∑
a=1

Θaya

)
+ R̄,

var(R|y) =
(
Σ−1
l + Θ

)−1
+ Σu

(28)

where Σu = (1− α) Σ and Σl = αΣ . Note that

Σ−1
l Σu = α−1 (1− α) I

Σ−1
l = α−1Σ−1

The total amount invested in assets beloging to a connected component Gk is given by∑
i∈Gk

ωi (y) = 1Tk ω (y), where 1k ∈ Rn is de�ned in (i).
Consider

1Tk ω (y) = 1Tk

((
Σ−1
l + Θ

)−1
+ Σu

)−1 (
Θ + Σ−1

l

)−1

(
m∑
a=1

Θaya

)
+

+ 1Tk

((
Σ−1
l + Θ

)−1
+ Σu

)−1 (
R̄− rf1

)
Thus ((

Σ−1
l + Θ

)−1
+ Σu

)−1

=
(
Σl (I + ΘΣl)

−1 + Σu

)−1

=
(
(I + ΘΣl)

−1 + Σ−1
l Σu

)−1
Σ−1
l

=
(
(I + ΘΣl)

−1 + Σ−1
l Σu

)−1
Σ−1
l

=
(
(I + ΘΣl)

−1 + α−1 (1− α) I
)−1

α−1Σ−1

Therefore if 1Tk is a left eigenvector with eigenvalue zero then

1Tk
(
(I + ΘΣl)

−1 + α−1 (1− α) I
)−1

α−1Σ−1 = 1Tk

because
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(
1 + α−1 (1− α)

)−1
α−1 = 1

:We now show that 1Tk is a left eigevector with eigenvalue zero of the matrix((
Σ−1
l + Θ

)−1
+ Σu

)−1 (
Θ + Σ−1

l

)−1
=
(
I +

(
Θ + Σ−1

l

)
Σu

)−1

=
(
1 +

(
α−1 (1− α)

)
I + Θ (1− α) Σ

)−1

which is true since 1Tk is a left eigevector with eigenvalue zero of matrix Θ.
Since 1TkΘa = 0 we conclude the proof.
Q.E.D.

Proof of Proposition 5: We obtain below the ex-ante expected utility for signals with
precision matrix Θ for both the CARA and mean-variance investor. The ex-ante utility are
explicitly given by:

U (Θ) = −1

γ
log

(
E

[
exp

(
−1

2
(E (R|y)− rf1)′ var (R|y)−1 (E (R|y)− rf1)

)])
: CARA

U (Θ) =
1

2γ
E
[
(E (R|y)− rf1)′ var (R|y)−1 (E (R|y)− rf1)

]
: Mean-variance

De�ne the conditional expectation by X = E (R|y)− rf1.
In order to take the expectation above we use the following result: if X ∼ N(µ,ΣX) is a

n-dimensional random vector with mean µ and variance ΣX then

E

[
exp

(
−1

2
X ′ΩX

)]
= det (I + ΣXΩ)−1/2 exp

(
−1

2
µ′Ωµ+

1

2
µ′Ω′ (I + ΣXΩ)−1 ΣXΩµ

)
E [X ′ΩX] = Tr(ΩΣx) + µ′Ωµ

Using the law of expectation,

µ = E [X] = E [E (R|y)− rf1] = E (R)− rf1 =R̄− rf1.

We have seen before that

Ω = var (R|y)−1 = Σ̂−1 =
(

Σu +
(
Σ−1
l + Θ

)−1
)−1

.

To obtain the conditional variance ΣX = V ar [E (R|y)− rf1] = V ar [E (R|y)] , the key
step is to use the law of total variance, instead of trying to compute it directly. By the total
law of variance,

V ar (R) = E [V ar (R|y)] + V ar [E (R|y)] .
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Taking into account that R = r+η, we have that V ar (R) = Σ = Σl+Σu and E [V ar (R|y)] =
V ar (R|y) = Σ̂ as given above. Thus

ΣX = V ar [E (R|y)] = Σl + Σu −
(

Σu +
(
Σ−1
l + Θ

)−1
)
,

⇒ ΣX = Σl −
(
Σ−1
l + Θ

)−1
= Σ− Σ̂.

In addition,

ΣX − Σ = ΣX − Σl − Σu = −Σu −
(
Σ−1
l + Θ

)−1
,

and thus,

(ΣX − Σ) Ω = −I
⇒ I + ΣXΩ = ΣΩ

Taking into account that Ω′ = Ω, and that ΣXΩ = ΣΩ− I, we have that

Ω′ (I + ΣXΩ)−1 ΣXΩ = Ω (ΣΩ)−1 (ΣΩ− I) = Ω− Σ−1.

Combining these results in the expression for ex-ante utility,

det (I + ΣXΩ)−1/2 exp

(
−1

2
µ′Ωµ+

1

2
µ′Ω′ (I + ΣXΩ)−1 ΣXΩµ

)
= [det (ΣΩ)]−1/2 exp

(
−1

2
µ′Ωµ+

1

2
µ′
(
Ω− Σ−1

)
µ

)
= [det (ΣΩ)]−1/2 exp

(
−1

2
µ′Σ−1µ

)
.

Thus, the certainty-equivalent utility of the CARA investor is

U (Θ) = −1

γ
log

(
[det (ΣΩ)]−1/2 exp

(
−1

2
µ′Σ−1µ

))
⇒ U (Θ) =

1

2γ

(
log
(

det
(

ΣΣ̂−1
))

+ µ′Σ−1µ
)
.

For the mean variance investor, the utility is

U (Θ) =
1

2γ

(
Tr(Σ̂−1ΣX) + µ′Σ̂−1µ

)
=

1

2γ

(
Tr(ΣΣ̂−1 − I) + µ′Σ̂−1µ

)
=

1

2γ

(
Tr(ΣΣ̂−1) + µ′Σ̂−1µ− n

)
.
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It is straightfoward that in the full-learnable case, when Σu = 0 and Σl = Σ, then

Σ̂−1 =
(

(Σ−1 + Θ)
−1
)−1

= Σ−1 + Θ, which implies the equation (18).

Q.E.D.

Proof of Lemma 1: Formally, the statement we will prove is: Let Θ0 and Θ1 be two
positive semi-de�nite information matrices and let λ ∈ [0, 1] and Θ = λΘ1 +(1− λ) Θ0. The
posterior precision mapping is (strictly) concave if

Σ̂−1 (Θ) � λΣ̂−1 (Θ1) + (1− λ) Σ̂−1 (Θ0) (29)

(w/ inequality holding strictly for λ ∈ (0, 1) and Θ0 6= Θ1).
The posterior precision mapping is (strictly) monotonic if for Θ � Θ∗ :

Σ̂−1 (Θ) � Σ̂−1 (Θ∗) (30)

(w/ inequality holding strictly for Θ � Θ∗).
(i.a) By the Woodbury identity

Σ̂−1 (Θ) =
((

Σ−1
u

)−1
+
(
Σ−1
l + Θ

)−1
)−1

= Σ−1
u − Σ−1

u

(
Σ−1
u + Σ−1

l + Θ
)−1

Σ−1
u .

But the mapping X � −X−1 is operator monotonic and concave on the set of pos-
itive de�nite matrices (see also Bhatia (1991, Ch. 5), and the mapping X � Σ−1

u −
Σ−1
u

(
Σ−1
u + Σ−1

l +X
)−1

Σ−1
u is strictly concave and monotonic on the set of positive semidef-

inite matrices (see also Bhatia (2007, Corollary 1.5.3).
(i.b) The mapping X � X−1 is (strictly) order-reversing over the set of positive de�nite

matrices. Thus for Θ � Θ∗ then
(
Σ−1
l + Θ

)−1 ≺
(
Σ−1
l + Θ∗

)−1
and thus Σu+

(
Σ−1
l + Θ

)−1 ≺
Σu+

(
Σ−1
l + Θ∗

)−1
. Applying the mappingX � X−1 once again yields Σ̂−1 (Θ) � Σ̂−1 (Θ∗) .

In the full learning case, i.e., Σu = 0, then Σ̂−1 (Θ) : Θ�
(
Σ−1
l + Θ

)
is linear in Θ and

is trivially strictly monotonic.
(ii.a) CARA preference case. Let A and B be two positive semi-de�nite information

matrices and let λ ∈ [0, 1] and Θ = λA+ (1− λ)B.
Our goal is to prove the following two formal results:

(i) log det
(

Σ̂−1 (Θ) Σ
)
≥ λ log det

(
Σ̂−1 (A) Σ

)
+ (1− λ) log det

(
Σ̂−1 (B) Σ

)
, (31)

(w/ inequality holding strictly for λ ∈ (0, 1) and A 6= B) and that

(ii) log det
(

Σ̂−1 (Θ) Σ
)
≥ log det

(
Σ̂−1 (Θ∗) Σ

)
, (32)

(w/ inequality holding strictly for Θ > Θ∗).
The log determinant mapping X � log det(X) is a strictly concave function on the

convex set of positive de�nite matrices X (see Theorem 7.6.7 in Horn and Johnson (pg
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466)). It is also a strictly monotonic function because log det(X) =
∑n

i=1 log(λ (X)i), where
λ (X)i are the eigenvalues of X (and if X > X∗ then λ (X)i > λ (X∗)i for at least one
eigenvalue).

We use below the following result, which follows directly from the Sylvester law of inertia.
Result HJ: (Horn and Johnson (pg 223)) For any non-singular positive de�nite matrix

Σ, if Θ � Q then the matrix Σ1/2PΣ1/2 � Σ1/2QΣ1/2, and if P � Q then Σ1/2PΣ1/2 �
Σ1/2QΣ1/2.

Property (29) combined with the result above yields

Σ1/2Σ̂−1 (Θ) Σ1/2 � λΣ1/2Σ̂−1 (A) Σ1/2 + (1− λ) Σ1/2Σ̂−1 (B) Σ1/2.

Therefore, by the monotonicity property of the log determinant,

log det
(

Σ1/2Σ̂−1 (Θ) Σ1/2
)
≥ log det

(
λΣ1/2Σ̂−1 (A) Σ1/2 + (1− λ) Σ1/2Σ̂−1 (B) Σ1/2

)
.

By the concavity property of the log determinant mapping we have

log det
(
λΣ1/2Σ̂−1 (A) Σ1/2 + (1− λ) Σ1/2Σ̂−1 (B) Σ1/2

)
≥

λ log det
(

Σ1/2Σ̂−1 (A) Σ1/2
)

+ (1− λ) log det
(

Σ1/2Σ̂−1 (B) Σ1/2
)

=

λ log det
(

Σ̂−1 (A) Σ
)

+ (1− λ) log det
(

Σ̂−1 (B) Σ
)
.

which combined implies property (31). Strict concavity follows from the strict concavity of
the log determinant mapping and the Result HJ above.

The strict monotonicity also holds because of the strict monotonicity of the log determi-
nant and the property (30) which we proved above.

(ii.b) Mean-variance preference case. The trace X � Tr(XΣ) is a linear and strictly
monotonic mapping. Therefore, from property (29) and (30) we have

Tr
(

Σ̂−1 (Θ) Σ
)
≥ Tr

(
λΣ̂−1 (A) Σ + (1− λ) Σ̂−1 (B) Σ

)
=

λTr
(

Σ̂−1 (A) Σ
)

+ (1− λ)Tr
(

Σ̂−1 (B) Σ
)
.

Moreover, from property (29) we have:

µ′Σ̂−1 (Θ)µ ≥ µ′
(
λΣ̂−1 (A) + (1− λ) Σ̂−1 (B)

)
µ =

λµ′Σ̂−1 (A)µ+ (1− λ)µ′Σ̂−1 (B)µ.

Combining both inequalities above, we obtain the monotonicity and concavity of the
ex-ante utility (and strict monotonicity and concavity, whenever Σu 6= 0).

Q.E.D.
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Proof of Lemma 2: The posterior variance is

Σ̂ (Θ) =
((

(αΣ)−1 + Θ
)−1

+ (1− α) Σ
)

=

= Σ1/2Σ−1/2
((

(αΣ)−1 + Θ
)−1

+ (1− α) Σ
)

Σ−1/2Σ1/2

= Σ1/2
(

Σ−1/2
(
(αΣ)−1 + Θ

)−1
Σ−1/2 + (1− α) I

)
Σ1/2

= Σ1/2
((
α−1I + Σ1/2ΘΣ1/2

)−1
+ (1− α) I

)
Σ1/2

= Σ1/2
((
α−1I + Θω

)−1
+ (1− α) I

)
Σ1/2

= Σ1/2
(
α (I + αΘω)−1 + (1− α) I

)
Σ1/2.

where Θω = Σ1/2ΘΣ1/2. Note that

α (I + αΘω)−1 + (1− α) I = α (I + αΘω)−1 + (1− α) (I + αΘω)−1 (I + αΘω) =

(I + αΘω)−1 (αI + (1− α) (I + αΘω)) = (I + αΘω)−1 (αI + (1− α) I + α (1− α) Θω) =

= (I + αΘω)−1 (I + α (1− α) Θω) .

Thus, we have

Σ̂ (Θ)−1 = Σ−1/2 (I + α (1− α) Θω)−1 (I + αΘω) Σ−1/2 = Σ−1/2f (Θω) Σ−1/2.

Therefore, the utility gain, for the CARA preference is

log det

((
Σ̂ (Θ)

)−1

Σ

)
= log det f (Θω) =

n∑
i=1

log f(λi),

where λi ≥ 0 are the eigenvalues of the weighted information matrix Θω.
Observe that the eigenvalues of Θω = Σ1/2ΘΣ1/2 are the same as the eigenvalues of ΘΣ.

Indeed, the eigenvalues are the solutions of

det(λI − Σ1/2ΘΣ1/2) = det
(
Σ−1/2(λI − Σ1/2ΘΣ1/2)Σ1/2

)
= det(λI −ΘΣ) = 0.

Mean-variance preference case: Let λi ≥ 0 and ξi be, respectively, the eigenvalues
and the eigenvectors of the weighted information matrix Θω = Σ1/2ΘΣ1/2 and Σu = (1− α) Σ
and Σl = αΣ, for some α ∈ [0, 1]. De�ne the strictly increasing and concave function f by

f(x) =
1 + αx

1 + α (1− α)x
. (33)
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In the mean-variance preference case, the ex-ante utility is

U (Θ) =
1

2γ

(
n∑
i=1

f(λi)
(

1 + (ξ′isr)
2
))

. (34)

where sR = Σ−
1
2

(
R̄− rf

)
.

Q.E.D.

Proof of Proposition 6: (i) We �rst show that

U =
1

2γ

τ
q∑

i,j=1:i<j

θiθj
[(
var(ri − rj) + (µi − µj)2)]

︸ ︷︷ ︸
UR

τ

φ+ τ
+ τ

(
q∑
i=1

θi
(
var(ri) + µ2

i

))
︸ ︷︷ ︸

UA

φ

φ+ τ

 .

De�ne the weighted incidence matrix ∇ ∈ Rn×n as

∇ (ij, k) =


−
√
θiθj if k is the initial vertex of edge e = ij√
θiθj if k is the terminal vertex of edge e = ij
0 if k not in edge e = ij

(see for example Bapat (2010, ch 4). Note that

Θ = diag (θ)− θθ′ = ∇T∇

We now show that

Tr(ΘΣ) =
1

2

q∑
i=1

q∑
j=1

θiθjvar(ri − rj) =

Indeed,

Tr(ΘΣ) = Tr(ΣΘ) = Tr(∇Σ∇T ) =(
∇Σ∇T

)
ij,ij

= θiθj (var(ri) + var(rj)− 2cov (ri, rj))

= θiθjvar(ri − rj)

Tr(∇Σ∇T ) =
∑
i,j:i<j

θiθjvar(ri − rj) =
1

2

q∑
i,j=1

θiθjvar(ri − rj)

The key property of the Laplacian is that:
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µ′Θµ = µ′ [diag(θ)− θθ′]µ

=
1

2

q∑
i,j=1

θiθj (µi − µj)2

Finally,
ΘA = τdiag(θ)

Therefore,

Tr (ΣΘA) + µ′ΘAµ = τ

(
q∑
i=1

θi
(
var(ri) + µ2

i

))
.

which completes the proof.

Q.E.D.

Proof of Proposition 7: We proceed evaluating the utility gain

U =
1

2γ

(
Tr (ΣΘ) + (µ1)′Θ (µ1)

)
− c(τ, φ),

where the information matrix is

Θ =

[
φ

τ + φ
[diag(τθ)] +

φ

τ + φ
[τ (diag(θ)− θθ′)]

]
.

Observe that

(µ1)′Θ (µ1) = µ21′Θ1 = µ2 φτ

τ + φ

and

Tr (ΣΘ) = σ2Tr ((I + ρJ) Θ)

= σ2Tr

(
Θ +

ρφ

τ + φ
11′ [diag(τθ)]

)
= σ2

(
TrΘ + ρ

φτ

τ + φ

)
.

Therefore,

U =
1

2γ

(
σ2TrΘ +

(
σ2ρ+ µ2

) φτ

τ + φ

)
− c(τ, φ) (35)

Consider the problem of maximizing the trace of the information matrix TrΘ subject
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to the constraints:
maxθ Tr

(
τ
(
diag(θ)− τ

τ+φ
θθ′
))

s.t.
∑m

i=1 θi = 1
θi ≥ 0, ∀i

# {i ∈ N : θi > 0} ≤ q.

Observe that

Tr

(
diag(θ)− τ

τ + φ
θθ′
)

= Tr (diag(θ))− τ

τ + φ
Tr (θθ′) ,

and Tr (diag(θ)) = 1 (because
∑

i θi = 1) and Tr (θθ′) =
∑m

i=1 θ
2
i , therefore,

Tr

(
τ

(
diag(θ)− τ

τ + φ
θθ′
))

= τ

(
1− τ

τ + φ

m∑
i=1

θ2
i

)
.

Thus the maximization problem is equivalent to

minθ
∑m

i=1 θ
2
i

s.t.
∑m

i=1 θi = 1
θi ≥ 0,∀i

# {i ∈ N : θi > 0} ≤ q.

The solution to this problem is to spread the precision equally across all possible q assets

so that θi = 1
q
, and the minimum is q

(
1
q

)2

= 1
q
, so that the maximum value of the problem

is equal to TrΘ = τ
(

1− τ
(τ+φ)q

)
.

Replacing this value into (35) yields

U(τ, φ) =
1

2γ
σ2

(
τ

(
1− τ

(τ + φ) q

)
+

(
ρ+

µ2

σ2

)
φτ

τ + φ

)
− c(τ, φ) =

=
1

2γ
σ2 τ

τ + φ

(
τ

(
q − 1

q

)
+

(
ρ+

µ2

σ2
+ 1

)
φ

)
− c(τ, φ)

The function U(τ, φ) is concave because the HessianD2U is negative semide�nite. Indeed,
de�ning

F (τ, φ) =
τ

τ + φ

(
τ

(
q − 1

q

)
+

(
ρ+

µ2

σ2
+ 1

)
φ

)
,

the second derivative is

D2F (τ, φ) =

[
∂2F (τ,φ)
∂τ2

∂2F (τ,φ)
∂τ∂φ

∂2F (τ,φ)
∂τ∂φ

∂2F (τ,φ)
∂φ2

]
= −

2
((
ρ+ µ2

σ2 + 1
)
−
(
q−1
q

))
(τ + φ)3

[
φ2 −τφ
−τφ τ 2

]
,
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(and eigenvalues of the matrix above are τ 2 + φ2 and 0 ), so all eigenvalues of the second
derivative are non-positive. Combining with the convexity of c(τ, φ) this completes the proof.

Q.E.D.

Proof of Proposition 8: Let Θ∗ be the optimal balanced design with precision τ ∗ and
φ∗ with information matrix

Θ∗ =
m

n

[
τ ∗φ

τ ∗ + φ∗
I +

τ ∗2

τ ∗ + φ∗
(q − 1)

(n− 1) q
(nI − J)

]
,

where τ ∗ and φ∗ are the solution of equation (24) for the CARA preference and the corre-
sponding equation for the mean-variance preference.

We will show that U (Θ∗) ≥ U (Θ) for any other feasible design Θ. The proof is inspired
by Kiefer's (1975) original proof of universal optimality of balanced designs. The strategy
of the proof is to show that there exist an (average) information matrix P , obtained by
averaging all permutations of Θ, such that (i) U

(
Θ̄
)
≥ U (Θ) , and (ii) that U (Θ∗) ≥ U

(
Θ̄
)
.

(i) Let π be a permutation of the set of n assets, i.e., a bijection π : {1, ..., n} → {1, ..., n} .
Let Tπ be the permutation matrix associated with a permutation π, which is the zero-one
matrix with exactly one entry equal to 1 in each row i and column π(i), for all rows, and all
other entries equal to 0. Let Π be the set of all permutations (Π has n! elements). Given any
arbitrary matrix A, the product TπAT

′
π is a matrix which permutes the rows and columns

of A.
Consider now the average of the information matrix Θ,

Θ̄ =
∑
π∈Π

1

n!
TπΘT ′π.

where Θ =
∑m

a=1 τa

(
diag(θa)− τa

τa+φa
θaθ
′
a

)
.

The concavity property of the utility function implies that

U
(
Θ̄
)
≥
∑
π∈Π

1

n!
U (TπΘT ′π) .

We now show that U (TπΘT ′π) = U (Θ) . Indeed TπT
′
π = T ′πTπ = I, thus Σ1/2TπΘT ′πΣ1/2

and Σ1/2ΘΣ1/2 have the same eigenvalues,

det(λI − Σ1/2TπΘT ′πΣ1/2) = det
[
Σ(λΣ−1 − TπΘT ′π)

]
= det

[
Σ(λΣ−1 −Θ)

]
= det(λI − Σ1/2ΘΣ1/2).

For the mean variance case in additional, note that sr = s̄r1 is symmetric then

s′rf(TπPωT
′
π)sr = s′rTπf (Pω)T ′πsr = s′rf (Pω) sr,

43



which completes the proof that U (TπΘT ′π) = U (Θ) .
Combined this implies that

U
(
Θ̄
)
≥ U (Θ) .

(ii) We now show that U (Θ∗) ≥ U
(
Θ̄
)
.

Start observing that given an arbitrary matrix A, taking the averages of all permutations
of A, yields the average matrix,

A =
∑
π∈Π

1

n!
TπAT

′
π = (w − z) I + zJ,

with all diagonal entries equal to w and o�-diagonal entries equal to z given by

w =
n∑
i=1

aii
n

=
1

n
Tr(A) and z =

n∑
i=1

∑
j 6=i

aij
n (n− 1)

=
1

n (n− 1)
(1′A1− Tr(A))

Consider now the average of the information matrix Θ, that is,

Θ̄ =
∑
π∈Π

1

n!
TπΘT ′π =

m∑
a=1

τa

(∑
π∈Π

1

n!
Tπdiag(θa)T

′
π −

τa
τa + φa

∑
π∈Π

1

n!
Tπθaθ

′
aT
′
π

)
.

Because θa1
′ = 1 for all a, then ∑

π∈Π

1

n!
Tπdiag(θa)T

′
π =

1

n
I.

Also because 1′θaθ
′
a1 = 1 then∑

π∈Π

1

n!
Tπθaθ

′
aT
′
π =

(
1

n
Tr (θaθ

′
a)−

1

n (n− 1)
(1− Tr (θaθ

′
a))

)
I +

1

n (n− 1)
(1− Tr (θaθ

′
a)) J

=

(
1

n (n− 1)
(nTr (θaθ

′
a)− 1)

)
I +

1

n (n− 1)
(1− Tr (θaθ

′
a)) J(

1

n (n− 1)
(nTr (θaθ

′
a)− n+ (n− 1))

)
I +

1

n (n− 1)
(1− Tr (θaθ

′
a)) J

=
1

n
I − 1

n (n− 1)
(1− Tr (θaθ

′
a)) (nI − J)
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Combining both terms yields,∑
π∈Π

1

n!
Tπdiag(θa)T

′
π −

τa
τa + φa

∑
π∈Π

1

n!
Tπθaθ

′
aT
′
π =

1

n
I − τa

τa + φa

(
1

n
I − 1

n (n− 1)
(1− Tr (θaθ

′
a)) (nI − J)

)
=

=
1

n

φa
τa + φa

I +
τa

τa + φa

1

n (n− 1)
(1− Tr (θaθ

′
a)) (nI − J) .

Thus the average information matrix Θ̄ is

Θ̄ =
m∑
a=1

τa

(
1

n

φa
τa + φa

I +
τa

τa + φa

1

n (n− 1)
(1− Tr (θaθ

′
a)) (nI − J)

)
.

By the Cauchy�Schwarz inequality the trace Tr (θaθ
′
a) =

∑n
i=1 θ

2
ai ≥ 1

q
since 1 = 〈θa, 1a〉2 ≤

〈θa, θa〉 〈1a, 1a〉 = q
∑n

i=1 θ
2
ai because

∑n
i=1 θai = 1 and θai ≥ 0 for at most q entries.

Therefore,

Θ̄ � Θ̂ :=
m∑
a=1

τa

(
1

n

φa
τa + φa

I +
τa

τa + φa

q − 1

n (n− 1) q
(nI − J)

)

=
m

n

(
m∑
a=1

1

m

τaφa
τa + φa

)
I +

(
m∑
a=1

1

m

τ 2
a

τa + φa

)
q − 1

(n− 1) q
(nI − J)

and by the monotonicity property of the operator U thus U
(
Θ̄
)
≤ U

(
Θ̂
)
.

But we show in Proposition 9 that U
(

Θ̂
)
≤ U (Θ∗) which completes the proof.

Q.E.D.

Proof of Proposition 9: (i) We �rst obtain the information matrix Θ for the balanced
design. De�ning the n ×m matrix θ = [θ1, ..., θm] ∈ Rn×m with columns equal to the time
allocations of each analyst, we can express the information matrix Θ using Proposition 1 as

Θ =
τφ

τ + φ
diag(θ1m) +

τ 2

τ + φ
(diag(θ1m)− θθ′)

The agents are organized in a balanced design therefore

q2θθ′ = (qθ) (qθ)′ = (c− λ) I + λJ ⇒ θθ′ =
1

q2
[(c− λ) I + λJ ] and

qθ1m = c1n ⇒ θ1m =
c

q
1n ⇒ diag(θ1m) =

c

q
I.
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Note that (
c

q
− (c− λ)

q2

)
=

(c (q − 1) + λ)

q2

and taking into account that
λ (n− 1) = c (q − 1)

we have that
(c (q − 1) + λ)

q2
=

(λ (n− 1) + λ)

q2
=
λn

q2

This implies that

diag(θ1m)− θθ′ = λ

q2
(nI − J)

and thus

Θ =
τφ

τ + φ

c

q
I +

τ 2

τ + φ

λ

q2
(nI − J) .

We can express the information matrix as

Θ = wI + z (nI − J)

where

w =
τφ

τ + φ

c

q
and z =

τ 2

τ + φ

λ

q2
.

(ii) The the eigenvalues of Θ are

ρ1 = w + zn with multiplicity n− 1
ρ2 = w with multiplicity 1 associated with eigenvector 1

The weighted information matrix is ΘΣ where Σ = σ2 (I + ρJ) is after multiplication
equal to

ΘΣ = (wI + z (nI − J))σ2 (I + ρJ)

= σ2wI + σ2z (nI − J) + σ2wρJ

= σ2w (I + ρJ) + σ2z (nI − J)

since (nI − J) J = 0.
The eigenvalues of ΘΣ are equal to:

λ1 = σ2 (w + zn) with multiplicity n− 1
λ2 = σ2 (w + wρn) with multiplicity 1 associated with eigenvector 1
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The eigenvalues are explicitly given by after replacing the expressions for w and z,

λ1 = σ2
(

τφ
τ+φ

c
q

+ τ2

τ+φ
λ
q2
n
)

λ2 = σ2 τφ
τ+φ

c
q

(1 + ρn)

but since

c

q
=
m

n

λ

q2
=
mq (q − 1)

nq2 (n− 1)
=

m (q − 1)

n (n− 1) q

then

λ1 = σ2m

n

τφ

τ + φ

(
1 +

τ

φ

(q − 1)

(n− 1) q

)
λ2 = σ2 τφ

τ + φ

m

n
(1 + ρn) .

(iii) We show that U(τ, φ) is concave using the following two properties of concave func-
tions: (a) non-negative weighted sum of concave functions is concave. (b) Moreover, the
composition of two f (g (τ, φ)) where f is a concave and increasing and g is convave is con-
cave.

To establish that λ1 (τ, φ) and λ2 (τ, φ) are concave note that their Hessian matrix are
negative semi-de�nite: Indeed:

λ2 (τ, φ) = κ
τφ

τ + φ
⇒ D2λ2 =

1

(τ + φ)3

[
−2φ2 2τφ
2τφ −2τ 2

]
λ1 (τ, φ) = κ

(
τφ

τ + φ
+ b

τ 2

τ + φ

)
⇒ D2λ1 =

1− b
(τ + φ)3

[
−2φ2 2τφ
2τφ −2τ 2

]
where b = (q−1)

(n−1)q
< 1. Note that the matrix is negative semi-de�nite because all its eigenval-

ues are non-positive: −2τ 2 − 2φ2 and 0.
For the comparative statics result observe that the solution (τ, φ) satis�es the �rst order

conditions

(n− 1)
f ′ (λ1)

f (λ1)

∂λ1

∂τ
+
f ′ (λ2)

f (λ2)

∂λ2

∂τ
= 2γ

∂c

∂τ
,

(n− 1)
f ′ (λ1)

f (λ1)

∂λ1

∂φ
+
f ′ (λ2)

f (λ2)

∂λ2

∂φ
= 2γ

∂c

∂φ
.
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The derivatives above are

∂λ1 (τ, φ)

∂τ
=

1

(τ + φ)2

(
bτ 2 + 2bτφ+ φ2

)
,

∂λ1 (τ, φ)

∂φ
=
τ 2 (1− b)
(τ + φ)2 ,

∂λ2 (τ, φ)

∂τ
=

(1 + ρn)φ2

(τ + φ)2 ,

∂λ2 (τ, φ)

∂φ
=

(1 + ρn) τ 2

(τ + φ)2 ,

f ′ (x)

f (x)
=

α2

(1 + αx) (1 + α (1− α)x)
.

Replacing them into the �rst order condition, after simpli�cation, yields

(n− 1)
f ′ (λ1)

f (λ1)

(
(q − 1)

(n− 1) q

((
τ

φ

)2

+ 2
τ

φ

)
+ 1

)
+
f ′ (λ2)

f (λ2)
(1 + ρn) =

(
(τ + φ)

φ

)2

2γ
∂c

∂τ

(n− 1)
f ′ (λ1)

f (λ1)

(
1− (q − 1)

(n− 1) q

)
+
f ′ (λ2)

f (λ2)
(1 + ρn) =

(
(τ + φ)

τ

)2

2γ
∂c

∂φ

The analysis of the equation above shows that the solution is such that an increase in q

leads to more weight on relative valuation ∂
(
τ
φ

)
/∂q ≥ 0, and such that an increase in asset

correlations ρ leads to less weight on relative valuation ∂
(
τ
φ

)
/∂ρ ≤ 0.

Q.E.D.

Proof of Proposition 10: (i) Remind the strict monotonicity property of the utility
function on information matrices shown in Lemma 1. Each analyst produces a diagonal infor-
mation matrix equal to Θa = τ (1− κ) diag(θa) or Θ′a = τ (1− 2κ) diag(θa), respectively if all
assets covered are in the same industry or not. Thus, any structure with cross-industry ana-
lysts can be dominated by a structure exclusively with industry specialists that is more infor-
mative

∑m
a=1 Θa due to the loss of precision of cross-industry analysts (e.g., by replacing two

cross-industry analysts by two specialists following the same assets
∑m

a=1 Θ′a ≺
∑m

a=1 Θa).
(ii) From Proposition 9 the structure with only industry specialists which creates the

maximum utility must have all analysts organized in a balanced way in each industry. A
balanced allocation with mj analyst allocated to each industry j produces an information
matrix, see equation 23,

Θ =

[
Θ1 0
0 Θ1

]
, where Θj =

τ (1− κ)mj (q − 1)

q (nj − 1)

(
Ij −

1

nj
Jj

)
.
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The variance Σ is equal to

Σ =

[
σ2

1 (I1 + ρ1J1) 0
0 σ2

2 (I1 + ρ2J2)

]
+ σ2

fJ

where J , J1, J2 are the matrices with all entries equal to one of dimensions n = n1 + n2, n1,
and n2; and similary Ij are the industry identity matrices.

Similiarly to equation (25), the matrix ΘΣ has two zero eigenvalues and n− 2 non-zero
eigenvalues equal to

λj = σ2
j

τ (1− κ)mj (q − 1)

q (nj − 1)
with multiplicity nj − 1.

From Lemma 2 the utility gain is

U (Θ) =
1

2γ

2∑
j=1

(nj − 1) log f(λj),

with the number of total analysts m = m1 + m2 distributed across industries so that the
marginal contribution of each analyst is equalized,

∂U (Θ)

∂mj

=
(nj − 1) f ′(λj)

f(λj)
σ2
j

τ (1− κ) (q − 1)

q (nj − 1)
,

which implies that the optimal allocation satis�es

f ′(λ1)

f(λ1)
σ2

1 =
f ′(λ2)

f(λ2)
σ2

2.

Let U (m) denote the maximun utility gain without cross-industry analysts. Because
f ′(x)
f(x)

is monotonically decreasing in x and converges to zero as x→∞, the marginal utility

U ′ (m) is decreasing in m and converging to zero as m converges to in�nity.
We now show that the structure above is dominated, for m large enough, by the alter-

native structure with m = m1 + m2 + mc, where there are mc cross-industry analysts each
of whom are allocating half of their time covering one asset in each industry.

Each cross-industry analyst contributes information matrix, by following assets i and
i′ with θi = 1

2
and θi′ = 1

2
, τ (1− 2κ) (diag(θ)− θθ′) , and thus mc cross-industry analysts

distributed in a balanced way, so that each of the n1n2 cross-industry pair of assets are
covered by the same number of analysts, produce information matrix

Θc =
mc

n1n2

× τ (1− 2κ)

4

[
n2I1 −Jc
−J ′c n1I2

]
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where Jc is the n1 × n2 matrix of ones. The information matrix Θ becomes

Θ =

[
Θ1 0
0 Θ1

]
+ Θc.

The matrix ΘΣ has one zero, and nj − 1 eigenvalues equal to

λj = σ2
j

(
τ (1− κ)mj (q − 1)

q (nj − 1)
+
mcτ (1− 2κ)

4nj

)
,

and one eigenvalue equal to

λc =
mcτ (1− 2κ)

4

2∑
j=1

(
σ2
jρj +

σ2
j

nj

)
.

The utility gain is thus

U (Θ) =
1

2γ

(
2∑
j=1

(nj − 1) log f(λj) + log f(λc)

)
.

The marginal utility contribution of the �rst cross-industry analyst is at least

∂U (Θ)

∂mc

|mc=0 ≥
1

2γ

∂ log f(λc (mc))

∂mc

=
1

2γ

f ′(λc)

f(λc)
|λc=0

τ (1− 2κ)

4

2∑
j=1

(
σ2
jρj +

σ2
j

nj

)

=
1

2γ
α2 τ (1− 2κ)

4

2∑
j=1

(
σ2
jρj +

σ2
j

nj

)
> 0

Therefore, the investor can obtain strictly higher utility utilizing some cross-industry
analysts for all m large enough because we have seen before that U ′ (m) is decreasing in m
and converging to zero as m converges to in�nity.

Q.E.D.
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B. Appendix B: Online Appendix

Proposition B.1 (Asymmetric Assets - Mean-variance Utility) Consider a setting where
Σ = diag(σ2

1, ..., σ
2
n) + σ2

fJ, and the prior asset returns are µi = E (Ri) − rf and mean-
variance utility. Consider the optimal allocation of time of an analyst with precision τ and
φ. Then unique global solution to the investor optimal design problem is for the analyst to
allocate attention θi only to assets with values for

σ2
i +

φ

τ + φ
µ2
i +

τ

τ + φ
(µi − µ̄)2 ≥ λ

above a certain cut-o� value λ. The attention is given by

θi =
1

2σ2
i

(
1 +

φ

τ

)(
σ2
i +

φ

τ + φ
µ2
i +

τ

τ + φ
(µi − µ̄)2 − λ

)+

where λ and µ̄ are constants obtained by the solution of the two equations
∑n

i=1 θi = 1 and
µ̄ =

∑n
i=1 µiθi, and the function x+ := max(x, 0).

Proposition B.2 (Necessary condition-Colbourn and Dinitz (2006)) Given a triple
(n,m, q) if λ−balanced design exists then the two necessary conditions must hold: (i) λ (n− 1)
must be divisible by (q − 1) and (ii) λn (n− 1) must be divisible by (q − 1) .
(Su�cient condition- Wilson (1970)) Given any triple (n,m, q), there exists an integer n0,
such that for all n ≥ n0 there exists a λ−balanced design if the two necessary conditions
above are satis�ed.

Proof of Proposition B.1: The investor utility gain in the case where all information
is learnable is

U =
1

2γ
(Tr (ΣΘ) + µ′Θµ)

where µ = E [R] − rf . We have shown before that due to the linearity of the utility gain
there is no interaction among the information production by di�erent analysts so we focus
on maximizing

max Tr (ΣΘ) + µ′Θµ

s.t. Θ = τ
(
diag(θ)− τ

τ+φ
θθ′
)

θi ≥ 0

To obtain Tr(ΣΘ) note that Σ = diag(σ2
1, ..., σ

2
n) + ρJ thus

Tr(ΣΘ) = Tr(diag(σ2
1, ..., σ

2
n)Θ) + Tr (ρJΘ) .
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The �rst part is

Tr(diag(σ2
1, ..., σ

2
n)Θ) =

n∑
i=1

σ2
i Θii = τm

n∑
i=1

σ2
i θi

(
1− τ

τ + φ
θi

)
since the diagonal terms are

Θii = τm

(
θi −

τ

τ + φ
θ2
i

)
= τmθi

(
1− τ

τ + φ
θi

)
.

To calculate the second term Tr (ρJΘ) , where J = 11′ note that the information matrix
can be expressed as

Θ = τ

(
diag(θ)− τ

τ + φ
θθ′
)

= τ

(
φ

τ + φ
[diag(θ)] +

τ

τ + φ
[diag(θ)− θθ′]

)
.

Because (diag(θ)− θθ′)1 = diag(θ)1− θ1 =0 we have that J (diag(θ)− θθ′) = 0. Thus

JΘ =
τφ

τ + φ
11′diag(θ) =

τφ

τ + φ
1θ′

and thus

Tr (ρJΘ) =
ρτφ

τ + φ

q∑
i=1

θi =
ρτφ

τ + φ
.

Combining both terms we have

Tr(ΣΘ) = τ

[
q∑
i=1

σ2
i θi

(
1− τ

τ + φ
θi

)
+

ρφ

τ + φ

]
.

and thus the optimal allocation of time θ does not depend on the correlation term ρ.
To compute µ′Θµ, after factoring out the constant τ , it is equal to:

µ′
(
diag(θ)− τ

τ + φ
θθ′
)
µ

= µ′diag(θ)µ− τ

τ + φ
µ′θθ′µ

= µ′diag(θ)µ− τ

τ + φ
(θ′µ)

′
θ′µ

=

q∑
i=1

µ2
i θi −

τ

τ + φ

(
q∑
i=1

µiθi

)2

Hence the optimal design problem simpli�es into solving the following concave constrained
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program which has a unique global solution characterized by the �rst order condition:

max τ
[∑q

i=1 θi

(
σ2
i + µ2

i − τ
τ+φ

σ2
i θi

)
− τ

τ+φ
(
∑n

i=1 µiθi)
2

+ ρφ
τ+φ

]
s.t.

∑q
i=1 θi = 1 λ multiplier
θi ≥ 0 λi multiplier

Consider the Lagragian

L = τ

 q∑
i=1

θi

(
σ2
i + µ2

i −
τ

τ + φ
σ2
i θi

)
− τ

τ + φ

(
n∑
i=1

µiθi

)2

+
ρφ

τ + φ


+

n∑
i=1

λiθi − λ

(
n∑
i=1

θi − 1

)
− δ (G (τ, φ)− κ)

The �rst order condition, which is necessary and su�cient to characterize the unique optimal
solution, is

∂L
∂θi

= 0,∀i
q∑
i=1

θi = 1 and G (τ, φ) = κ

λi ≥ 0, θi ≥ 0, and λiθi = 0,∀i

Explicitly the �rst order condition above is equivalent to:

∂L
∂θi

= σ2
i + µ2

i −
2τ

τ + φ
σ2
i θi −

2τ

τ + φ
µi

(
q∑
i=1

µiθi

)
+ λi − λ = 0

q∑
i=1

θi = 1

λi ≥ 0, θi ≥ 0, and λiθi = 0,∀i

Let µ̄ :=
∑q

i=1 µiθi be the average value of excess returns, which appears in all equations
above. The �rst equation becomes

2τ

τ + φ
σ2
i θi = σ2

i + µ2
i −

2τ

τ + φ
µiµ̄+ λi − λ

which determines θi. Note that for any asset i such that σ2
i + µ2

i − 2τ
τ+φ

µiµ̄ − λ < 0 then

53



λi > 0 and thus θi = 0. Moreover, if θi > 0 then λi = 0. Therefore

2τ

τ + φ
σ2
i θi =

(
σ2
i + µ2

i −
2τ

τ + φ
µiµ̄− λ

)+

,

which is equivalent to

θi =
1

2

(
1 +

φ

τ

)(
1− 1

σ2
i

(
λ− µi

(
µi −

2τ

(τ + φ)
µ̄

)))+

.

Q.E.D.

B.1 CARA preferences

An investor with Constant Absolute Risk Aversion evaluates lotteries according toE1[exp(−γW3)],
where W3 is the investor date 3 wealth (and consumption). In our setting W3 = (1 + Rp)
because the investor wealth is normalized to 1. It follows then that the ex-ante utility of a
CARA investor can be represented (up to a strictly monotone transformation ) as

U = −1

γ
log(E[exp(−γRp)])

Note further that the portfolio choice of the CARA and mean-variance investors are
the same because here we normalize their wealth and all asset prices to be equal to one.
Therefore portfolio weights (in the mean-variance case) and asset quantities (in the CARA
case) are one and the same in this special case.
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