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Suppose we are in an economic crisis and the central bank announces asset purchases of $100

billion to support financial markets and the economy. After the announcement, asset prices strongly

increase. A large response relative to the amount announced makes it tempting to conclude that

asset purchases are a very effective policy tool. But an alternative view is that the strong response

is not only driven by the announced quantity, but also by the perception that policymakers might

do whatever it takes, in that they will go to much greater lengths to backstop markets if the situ-

ation gets worse. Distinguishing these views is important. Under the whatever-it-takes view, the

expansion of the central bank’s balance sheet may be much larger, the price impact per dollar of

purchases much smaller, and the price response to future announced purchases much weaker, com-

pared to the view of a one-time $100 billion asset purchase. These issues are not only important

for asset purchases, an increasingly utilized tool for central banks globally, but also arise for many

other policy announcements including bank bailouts, fiscal policy, or forward guidance: when a

policy is announced, markets do not only learn a single headline number, but form a view of policy

actions in many different states of the world.

We propose and implement a method to measure the state-contingent impact of policy actions

using option prices that is valid for a wide class of mechanisms. The key idea is to use the change

in the entire option-implied distribution of a given asset over the announcement to characterize

the impact of policy across many possible states, rather than only the change in price. We find

pervasive evidence of larger policy impact (e.g., larger policy interventions) in bad states of the

world across many financial stabilization policies including corporate bond purchases during the

COVID-19 crisis, U.S. quantitative easing, asset purchases by both the Bank of Japan and European

Central Bank, and bank capital injections in the 2008 crisis. When central banks first step into

markets, this “policy put” of additional interventions if conditions worsen explains a large share

of the markets’ response. These perceptions of conditional interventions appear persistent, with

evidence that they affect how markets respond to the announcement of subsequent interventions.

Our primary empirical example is the Fed’s announcement of corporate bond purchases in

March of 2020, which immediately led to a dramatic recovery in corporate bond prices despite a

small amount of ultimate purchases. We decompose this recovery in a state-by-state response. In

states where corporate bond prices would have decreased 35% without intervention, the interven-
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tion raises them by about 40%.1 However, in states where prices would have otherwise increased

20%, the intervention only increases them by an additional 2%. This striking asymmetric effect

has a signature very similar to a put option. Adding up these responses across all potential states,

we find that at least 50% of the large price recovery from the announcement came from additional

policy in the left tail. This explains why the announcement led to an immediate increase in corpo-

rate bond prices of between $500 billion and $1 trillion despite ultimate purchases of less than $15

billion: the market expected a more aggressive intervention if economic conditions had worsened.

How do we infer the state-contingent policy impact? We need to assess how much the policy

changes asset prices in each potential future state of the world at a given horizon. Option contracts

provide a unique window into these potential states. Intuitively, an out-of-the-money put, which

only pays off in low price states, is entirely driven by expectations of policy in bad states. An

out-of-the-money call reveals policy when conditions improve. Options on corporate bond ETFs

show a stronger price increase for contracts targeting bad states of the world at the announcement.

We show how to go further than this qualitative assessment and obtain the entire state-contingent

policy.

Specifically, we estimate a “price support function,” g(.), that measures the state-by-state re-

sponse of prices to the policy intervention: in the state that the price were to move to p absent

intervention, the intervention will raise it by g(p) percent so that we observe p(1 + g(p)) in that

state. First, the price of options across different strikes reveals the market perception of the distri-

bution of the future price or risk-neutral distribution (Breeden and Litzenberger, 1978). We obtain

this distribution using options maturing three months from the policy announcement, roughly when

the bond purchases were implemented. Comparing before and after the announcement, we can see

how the perceived purchases change the entire distribution of the price at that horizon. The second

step is to find a price support function g(.) that ties these two distributions together. Which prices

have been moved to which new levels to obtain the post-announcement distribution? This type of

mathematical question is a transport problem. We derive its unique solution under the assump-

tion that the policy is order-preserving: the Federal Reserve does not support prices so much in

bad states of the world that they exceed prices in better states. While this measure is intuitive,

its economic interpretation requires a set of assumptions, which we formalize, discuss, and assess

1Prices are still dropping in these states, by 1 − (1 − 0.35)× 1.4 = 9%.
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robustness to. One such assumption is a separability property: policy in a state of the world does

not affect outcomes in other states.

In the case of the 2020 corporate bond purchases, the price support function we recover in the

data is strongly asymmetric and resembles a “policy put:” price support is low and relatively flat in

good states of the world but increases to much larger values as we move toward worse states.2 Our

measurement framework is not specific to this event. We construct the conditional price support

function for many other policy announcements for which we have relevant option data: equity

purchases by the Bank of Japan in 2013, the quantitative easing operations in the US from 2008 to

2013, asset purchases by the European Central Bank from 2010 to 2012, and the financial sector

bailout in the US in 2008. We find pervasive evidence of asymmetric price support across all these

announcements, albeit with different intensity.

After documenting this asymmetric price support, we turn to the economic channels to in-

terpret our results. First, a natural interpretation is that all price support comes from conditional

policy actions: the Fed will buy more in bad states than good states. For example, consider the

view that the elasticity of bond prices to bond purchases is constant across states. In this case, the

asymmetry that we document implies around 20 times larger purchases if the price had fallen by

30% compared to the realized state, and around 6 times larger purchases compared to the state with

no price change. Calibrating the elasticity to the literature implies purchases of about $800 billion

in bad states, suggesting that additional announcements would have occurred then. This state-

dependent quantity view is consistent with statements made by the chair of the Federal Reserve

Jerome Powell in June 2020, for example: “markets are functioning pretty well, so our purchases

will be at the bottom end of the range that we have written down.”3 We argue this view is more

plausible than the view of a constant small quantity of purchases but state-dependent elasticity –

under that view the price impact for each dollar of purchases would have to be around $200 in

some states, which is orders of magnitude larger than any estimates elsewhere in the literature.

Our baseline calculation assumes invariance of the short-term pricing kernel to the announce-

ment. That is, while we do not take a stand on the form of the pricing kernel, we assume that

it does not change for payoffs at the horizon between the announcement of purchases and actual

2See Cieslak and Vissing-Jorgensen (2021) and also Drechsler et al. (2018) for a related discussion of monetary
policy and stock returns and Hattori et al. (2016) on the response of quantitative easing on stock market tail risk.

3This quote is part of his statement to the U.S. House of Representatives on June 16, 2020.
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purchases. Changes in risk-pricing after actual purchases are made are allowed by our framework

and a likely justification for the price impact of purchases.4 We extend the framework to entertain a

response of the short-term pricing kernel to the purchases. We show that under the null of constant

price support, investors’ pricing kernel generally does not change on announcement for payoffs

that occur before purchases are made. At a minimum, our estimates thus reject the null of constant

price support. When purchases are state-dependent, the risk of the asset itself can change and this

could affect the specialized investors’ pricing kernel between announcement and purchases. We

show how to adjust our price support function conservatively for this effect, and find that our main

conclusions of strongly asymmetric price support still hold. In addition, other assets such as stocks

or high-yield bonds do not react to the announcement, cutting against the idea of a broad change

in the pricing of risk.

Mechanisms that do not fit our framework could offer alternative explanations of these find-

ings. In particular, theories of multiple equilibria and runs do not satisfy the separability property:

out-of-equilibrium beliefs about how policy plays out in a run affect the likelihood of runs on the

equilibrium path. Recovering a policy plan from the price support function under such theories

would require a specific structural model.

We also show how to draw inference on the states in which the Fed was likely to provide

more support, by bringing evidence from options on additional assets. Corporate bond prices can

fall because of rising risk-free rates, increases in credit risk or because of disruptions in corporate

bond markets not due to fundamentals. We infer the distribution of a synthetic corporate bond

index using options on Treasuries and options on the investment-grade CDX index. We find that

the intervention worked almost exclusively by shrinking the probability of very high dislocations

— states where the gap between the synthetic corporate bond and actual corporate bond prices

widened. This pattern is consistent with Powell’s emphasis on “markets [...] functioning” when

discussing the intervention.

Our results suggest that state-contingent policy is an appealing explanation for the broader

finding that announcements of asset purchase programs are associated with large movements in

asset prices (Gagnon et al., 2018; Vissing-Jorgensen and Krishnamurthy, 2011; Haddad et al.,

4See Appendix Section B. For example, the elasticity of asset prices to purchases could operate through a change
in the amount of risk that investors bear once the central bank buys the assets as in Vayanos and Vila (2021).
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2021).5 They also help reconcile these strong initial responses with weak reactions to subsequent

interventions. Hesse et al. (2018), Meaning and Zhu (2011), and Bernanke (2020) find that initial

stage announcements of asset purchases in the US and Europe have large effects on asset prices but

later stage announcements have little to no effect. In our framework, early announcement responses

also reflect the value of state-contingent actions to do more if the situation worsens. Thus, if one

does not account for the costs of these state-contingent promises, the market response to an early

announcement provides an overly rosy view of the cost-benefit of these programs. Conversely,

in later stages of asset purchase programs this state-contingent policy has already been reflected

in prices. Thus, even a large announcement can appear to have zero effect even if it had exactly

the same effectiveness as the early announcements. We expand the set of announcements in this

literature and show that our results can make sense of these repeated announcement effects.

Our results speak to macro-finance models that assess the impact of policies to support finan-

cial markets during crashes, such as asset purchases or equity injections to the financial sector (e.g.,

He and Krishnamurthy (2013), Moreira and Savov (2017), Vayanos and Vila (2021)). Our find-

ings suggest that state-contingent policy is first order to understanding the effectiveness of policy

announcements, and we provide an entire state-contingent price response that such models could

target. We highlight that communication about policy in bad states — as opposed to the base-

line state only — is particularly important because it plays a sizable role in shaping how markets

respond.

Our findings also relate to the literature on forward guidance and central banking communica-

tion starting with the seminal work of Gürkaynak et al. (2004). Other examples include Piazzesi

(2005), Swanson (2011), Hanson and Stein (2015), and Nakamura and Steinsson (2018). Haddad

et al. (2024) study the impact of asset purchase policy rules. Hubert et al. (2024) relate the commu-

nicated goal of QE operations by the ECB with their impact. Relatedly, Bianchi et al. (2022) study

monetary policy rule changes and their effect on asset prices while Bauer et al. (2022) study per-

ceptions of rule changes implied by surveys. We show that agents immediately form perceptions

of a state-contingent plan of actions for policies with no prior track record, and how to measure

these perceptions in real time.

Finally, our analysis also connects to broader work using information in options markets to

5See also D’Amico and King (2013), Hamilton and Wu (2012).
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interpret policy. Kelly et al. (2016b) focus on the price of uncertainty associated with regular

political events (e.g., elections). Our work instead focuses on inferring conditional policy from

an unexpected event. Relatedly, Kelly et al. (2016a) use options markets to evaluate government

guarantees on the financial sector in the 2008 crisis. Kitsul and Wright (2013) and Hilscher et al.

(2022) use option prices to assess inflation probabilities. Barraclough et al. (2013) use option

prices to inform merger announcements.6 While we focus on asset purchase policies, we provide

a blueprint for using our method in a wide variety of contexts.

1. Measuring State-Contingent Policy

In this section, we introduce a framework for measuring the state-contingent impact of policy

announcements. We start by a simple example illustrating how the presence of policy promises

affects the response of asset prices to policy announcements. The overall market response reveals

the combined effect of the announced policy and conditional promises. However, the contingent

nature of option contracts sheds light on the states in which promises will be fulfilled. Our method

builds on this insight to quantify the state-contingent impact of policy. Specifically, we show how

to estimate a price support function and provide and discuss a set of precise assumptions sufficient

to interpret the price support function as measuring the state-contingent impact of a policy.

1.1 The Effect of Policy Promises on Asset Prices

Consider a stylized example with two dates, 0 and 1. At date 0, the price of an asset is p0. Under

rational expectations, this price is the (risk-neutral) expected value of the date-1 price: p0 = E[p1].

For simplicity, we assume that the risk-free rate is equal to 0 between date 0 and 1.

No promises. A new policy is unexpectedly announced at date 0: a quantity Q of a policy tool

will be used at date 1. The per-unit effectiveness of the policy in moving prices is given by M,

where M is a constant. For example, the Fed unexpectedly announces that it will purchase a

quantity Q of corporate bonds (the asset) at a future date, where Q is denoted as a fraction of the

total supply of corporate bonds. In that interpretation, M reflects the price impact per quantity of

6See also Grinblatt and Wan (2020), which discusses anticipated effects of announcements.
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asset purchased, or the inverse elasticity of demand for corporate bonds. Specifically, M is the

percentage response in the price of the asset per percentage point of supply purchased. Another

example would be the announcement of a new fiscal stimulus package. There, M would be the

present value of the product of the fiscal multiplier with the pass-through from GDP to corporate

profits.

Given the new policy, the price at date 1 will be p′1 = p1(1 +MQ). Therefore the post-

announcement price becomes

p′0 = E[p1](1 +MQ). (1)

In other words, the return at announcement, (p′0 − p0)/p0, is exactly proportional to MQ. A

number of researchers have used this idea to back out the overall effect of purchase policies and

the multiplier of prices to purchases.7

Conditional promises. When the new policy is announced, the market might (rightfully) infer

that the policymaker will take different actions depending on the state of the world. For example,

it could be that the market expected the Fed to purchase even larger amounts of corporate bonds

were the COVID-19 crisis to deepen. Our notion of promises is what the market expects policy

makers do in different states of the world, but we are silent on whether the promises are explicitly

made by policymakers or even intentional. For example, Mario Draghi’s famous speech explicitly

promised to do “whatever it takes” in the midst of the Euro area sovereign debt crisis in 2012,

but it is unclear what the market inferred from the announcement. Conversely, announcements of

U.S. quantitative easing specified limited quantities of purchases, but it is plausible that market

participants made inferences about additional purchases in the future.

To illustrate the impact of conditional promises, assume that the policymaker is ready to

do whatever it takes to maintain the price above a lower threshold p. That is, if we are in

a state at date 1 where the price would fall below p despite the baseline intervention Q, they

will scale up the policy by any additional amount Q̃ needed to reach p. This corresponds to

Q̃ = max
(

1
M(p/p1 − 1)− Q, 0

)
. The price at date 1 becomes p′1 = p1(1 +M

(
Q + Q̃

)
),

7For example, Bouveret and Yu (2021) and Chaudhary et al. (2023) estimate multipliers for corporate bonds and
Hamilton and Wu (2012), Greenwood and Vayanos (2014), and Busetto et al. (2022) estimate for government bonds.
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and the post-announcement price is

p′0 = E[p1](1 +MQ) + E[MQ̃p1]. (2)

We see that both the baseline policy and the implicit promise shape the price response to the

announcement. The promise provides an additional boost to the price equal to the expectation

of the product of the policy effectiveness, the additional policy action, and the no-policy price in

states in which that policy is implemented.8

Both effects are intertwined and, based on the price response to the announcement alone, they

cannot be separated. In particular, ignoring the presence of promises leads to incorrect inference

about the effectiveness of the policy. If an econometrician assumes that only the baseline policy is

present and estimates the multiplier by comparing the price response to the announced purchases

(or the realized purchases provided the promises are not realized), their estimate will be biased:

Mestimated = M
(

1 +
E[p1Q̃]

E[p1]Q

)
. (3)

Because the promise provides additional price support, the effectiveness of the policy will be over-

estimated. Both the intensive — how often additional policy will be implemented — and the

extensive margin — how much additional policy is implemented — shape the bias. First, the bias

depends on how likely the promises are to be implemented, specifically how much the states where

the promise is implemented contribute to the initial price. Because new policy tools are often used

in difficult and uncertain conditions — think of the midst of the COVID-19 crisis — this proba-

bility is likely non-negligible. Second, the bias depends on the size of the promised policy relative

to the baseline amount Q̃/Q when it is implemented. This second effect can be sizable, for ex-

ample much larger than 1. Indeed, if the crash scenarios are dramatic, the policy maker might

expend significantly more resources. For the main event we study in this paper, we find that both

the probability of additional support and the strength of additional price support are economically

significant. To be concrete, the corporate bond market increased by about $0.5-1 trillion in value

when the Fed announced corporate bond purchases in March of 2020 though the Fed ended up only

8Equation (2) as well as the next equation (3) hold for any distribution of additional policy intervention Q̃.
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making purchases of around $15 billion. Our estimates suggest that close to half of the response is

due to a 20-fold increase in the size of the program in the lowest 20% of states.

Knowing whether the promise is present is also relevant for understanding the dynamics of

policy decisions. For example, if the policymaker only announced explicitly the baseline pur-

chases Q, market participants’ perception of the potential additional purchases Q̃ indicates that

more interventions will be subsequently announced. Such inference depends on the content of the

announcement itself. As an alternative example, it could also be that the policy maker explicitly

announced both Q and the intention of maintaining the price above p.9 Then, no subsequent an-

nouncement would be needed. In practice, announcements often fall somewhere in the middle,

with a cap on the quantity purchased; the question then is whether the perceived state-contingent

intervention Q̃ can exceed this cap. We come back to this question for the 2020 corporate bond

purchases in Section 2.4.

Which data can separate promises from the baseline policy? Option contracts on the asset offer

a path forward. In the simple example of this section, the price of put options with a strike below

p goes to 0 after the announcement in the case with a promise because the intervention prevents

the asset price from going below this threshold. More broadly, the response of option prices allow

us to zoom in on different parts of the state space and measure the conditional impact of the policy

for a more general set of interventions.

1.2 A Method to Estimate Conditional Policy Impact

We present a method to estimate conditional policy perceptions following the announcement of

a new policy using option prices. Specifically, we estimate a conditional price support function:

how much will the policy intervention change the price of the asset in each state of the world at

date 1. This corresponds to identifying a function g(.) such that p′1 = p1(1 + g(p1)). In the

example without promises, this function is constant, g(p1) = MQ, while the price support is

state-dependent and decreasing in the example with promises, g(p1) = M(Q + Q̃(p1)).

Our approach proceeds in two steps. First, we obtain the distributions of the price with and

without policy, p1 and p′1. Second, we solve the transport problem of inverting the price support

9The Bank of Japan’s yield curve control policy (https://www.boj.or.jp/en/mopo/mpmdeci/mpr 2016/k160921a.pdf)
is an example of such a policy.
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to move from one distribution to the other.

Step 1: Recovering the future price distribution. We follow the approach of Breeden and

Litzenberger (1978) to recover the risk-neutral distribution of the future price of the asset. They

show that observation of option prices (calls or puts) across strikes allows you to infer the distribu-

tion of the price of the underlying. Let us review this result. Denote Put(p1, K) = max(K− p1, 0)

the payoff of a put with strike K when the price is equal to p1. The difference between the payoff

functions of two puts with close strikes approximates a step function at that point. Formally, this

observation corresponds to

dPut(p1, K)
dK

= lim
h→0

Put(p1, K + h/2)− Put(p1, K − h/2)
h

= 1{p1<K} (4)

Turning back to date 0, this implies that the slope of the put prices with respect to the strike price is

equal to the expected value of the indicator function. This expected value is exactly the probability

that p1 is less than K, the cumulative distribution function (CDF) FQ
p1(K). We use the superscript

Q to indicate the risk-neutral aspect of the distribution.

The first step of our method is to apply this idea to the option curve (the relation between

strike and put price) before and after the announcement. This allows us to recover the CDFs of

the no-policy price p1 and the post-policy price p′1, which we denote FQ
p1 and FQ

p′1
, respectively.

In practice, we only observe option prices for a finite number of specific strikes, so interpolation

between observed strikes is needed. Appendix A provides additional details on implementation.

The first two plots of Figure 1 illustrate these distributions for our two examples. In the case of

a constant price support, Panel A, the probability density functions (PDF) shifts to the right. With

the added promise of supporting the price above p, the left tail of the distribution is replaced by a

mass at that point.

Step 2: Solving the transport problem. Once we have the distributions with and without in-

tervention, the next task is to find the conditional price support g(.) that explains the change in

distribution. This type of problem is known as a transport problem: how should we move the

values of a random variable in each state to obtain a new distribution? A simple and, as we will

discuss in the next section, economically appealing way to find a solution to this problem is to
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assume the transport is monotone. That is, we look for a price support that does not change the

ranking of the asset price across states. This order-preserving property guarantees existence and

uniqueness of a solution g(.) up to probability-0 events. Furthermore, there is a simple method to

construct this mapping. Start from a value x and compute the corresponding CDF FQ
p1(x). Then,

because the order of states of the world is unchanged, this value must map to another value y that

falls at the same ranking, that is, the same CDF value. This corresponds to finding y such that

FQ

p′1
(y) = FQ

p1(x). Once we find this price mapping, we simply have: y = x(1 + g(x)), which

reveals g(x). For example, assume your initial value is the 20th percentile of the distribution of

p1. The post-policy price corresponding to this state is the 20th percentile of the distribution of

p′1.10 The price support function is the change in price necessary to move from this initial value to

the post-policy price. The following definition summarizes this calculation.

Definition 1. The price support function g is the unique order-preserving transport from FQ
p1 to

FQ

p′1
. It is equal to

g(p1) =
FQ

p′1

−1
(FQ

p1(p1))− p1

p1
. (5)

Going back to the issue of implementation, we only observe the CDFs on finite intervals.

Examining this formula tells us that we can only recover the function g for states for which we can

measure both CDFs. That is, if we can measure the 20th percentile of both CDFs, we can obtain

the mapping for this percentile. Formally, this implies that we can solve the function g(.) over

the domain FQ
p1

−1
(FQ

p1(I) ∩ FQ

p′1
(I′)), where I and I′ are the domain of strikes covered by options

before and after the announcements.

The third plot of Figure 1 reports the price support functions recovered with this approach

for our two examples. For Panel A, with a constant intervention, the method correctly identifies

a parallel shift in the distribution (in log), and therefore a constant price support. In Panel B, the

replacement of the tail by a constant value leads to a sharply decreasing function g(p) below the

threshold. This slope of −1 in this range is actually the largest permitted while maintaining the

order-preserving property. Interestingly this price support function coincides exactly with a put

10This is similar to constructing a Quantile-to-Quantile (“Q-Q”) plot of p1 and p′1.
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A. Constant Price Support
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B. Whatever It Takes
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Figure 1: Examples of Distributions and Conditional Price Support Policies
The top row considers a constant price support: the price is increased by the same amount in all states. The bottom row
considers a whatever-it-takes promise to maintain the price above a threshold p. The left panels report the PDF of the
date-1 price before the announcement. The middle panels report the PDF of the date-1 price after the announcement.
The right panels report the corresponding price support functions g(.).

option payoff, giving a formal way to measure the commonly used notion of a “policy put.”

1.3 When Does the Price Support Function Reveal State-Contingent Policy

Impact?

The price support function, as an empirical measure, can always be constructed from observations

of option prices before and after an announcement or event. In the idealized examples of Section

1.1 and Figure 1, it reveals the state contingent impact of the policy. When is such an interpretation

valid in real-world situations?

The next proposition provides a set of four formal conditions. We maintain the timing as-

sumptions of our motivating example. At date 0, a policy is announced to be implemented at date

1. Market participants infer a state contingent plan from the announcement. That is, the policy

implementation can depend on the realized state of the world at date 1.

Proposition 1. The price support function defined in equation (5) measures the state-contingent
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impact of the policy if the following assumptions are satisfied:

1. (Event-study identification) Asset prices before and after the announcement reflect equilibria

of economies that are identical at the announcement date except that in one case the policy

plan is never implemented, and in the other the policy plan is implemented with certainty.

These two economies have uncertainty at date 1 driven by a state s with identical distribution

F.

2. (Separability) Policy acts separably across states at date 1. In the equilibrium with policy,

the policy action and its impact g in a given state depends only on the value of the asset

price in that state absent policy p1(s):

p′1 = p1 (1 + g(p1)) . (6)

3. (Order-preserving) The with-policy price p′1 is weakly increasing in the no-policy price p1.

4. (Invariant stochastic discount factor) The same stochastic discount factor m(s), and there-

fore the same risk-neutral measure EQ, prices the asset and options at date 0 in the with-

policy and the no-policy economy:11

i) Without policy, for all functions h, a claim paying h(p1) at date 1 has price

∫
m(s)h(p1(s))dF(s) = EQ[h(p1)]. (7)

ii) With policy, for all functions h, a claim paying h(p′1) at date 1 has price

∫
m(s)h(p′1(s))dF(s) = EQ[h(p′1)] = EQ[h(p1(1 + g(p1))]. (8)

While these conditions are unlikely to be perfectly respected in practice, they provide guidance

for what one should assess before interpreting an estimated price support function. We now discuss

each of these assumptions and how to test, approximate, or relax them.

11To simplify notations, we are ignoring risk-free discounting between date 0 and 1. Equivalently, we are working
with forward prices.
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1.3.1 Event-study identification

The first condition is a form of event-study empirical design. It assumes that observational data

about prices before and after the announcement reflect the counterfactual experiments of situations

with or without policy. This occurs when the announcement is unanticipated and its implementa-

tion is certain. Unanticipated means that the probability of the policy plan implementation before

the announcement is close to 0. Certain implementation means that after the announcement, the

probability of implementation is close to 1.

In contrast, if the policy is anticipated, prices before the announcement already reflect some

of its influence. Hence, by focusing on the response to the announcement, one would underesti-

mate the policy’s impact.12 In Appendix E, we show how to adapt our method when the policy is

somewhat anticipated and the implementation is uncertain. When applying this approach to our

main empirical estimates, we find that accounting for mild anticipation and uncertain implemen-

tation leads to small changes and that, if anything, the baseline estimates understate not only the

effectiveness of the policy plan but also its asymmetry across states. In other words, using this first

assumption to approximate reality leads us to draw conclusions that are too conservative on the

role of state-contingent policy.

Another natural concern with this assumption is that other news can be concurrent with the

policy announcement. Understanding the specific context of each announcement is necessary to

assess whether another major event is going on. For example, Section 2.1 discusses the events

around corporate bond purchases in 2020. Furthermore, financial data always exhibits sizable

volatility reflecting a constant flow of background news. Focusing on a tight window around the

policy announcement limits the role of these other news. In this paper, we compare prices the

trading day before the announcement with those at the end of the day of the announcement, the

tightest our data allows. Relatedly, to draw careful statistical inference one has to assess whether

the “signal” of the policy announcement dominates the “noise” of the remaining ambient news.

Concretely, this means constructing appropriate confidence intervals for our estimates, something

we explain precisely how to do in Section 2.3.

Finally, we also assume that the two counterfactual worlds are driven by the same source of

12Intuitively, if a given market response is triggered by only a 50% update in the probability of intervention, this
implies that the total effect of the policy is twice as large as if the same market response resulted from a 100% update.
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fundamental uncertainty, the state s. For example, s could be a state of nature (e.g. rain or shine,

or how bad the COVID-19 disease is) with dynamics that do not respond to the policy.

1.3.2 Separability

The second condition is a simple way to define an economically meaningful notion of state-

contingent policy impact. It departs from a monolithic view that a policy announcement conveys a

single number. Instead this condition entertains different policy actions across states of the world

that each translate into their own impact, represented by the price support function g(.). This rep-

resentation assumes that the state-contingent impact depends only on what the date-1 price of the

asset would be absent policy intervention, p1. It summarizes the total impact of the policy, and

on its own does not separate the exact origin of this impact. With additional information about

the policy — such as Q or M in our example — one can link the price support back to specific

actions; we will do so in our applications. The representation of the policy by a price support

function does not imply that the policy acts only on the asset price or is designed to focus on the

asset price. Policymakers, even when they explicitly want to support prices, look at a variety of

pieces of information to make decisions. Using the no-policy price as the conditioning information

reflects the aspect of conditioning that is captured by option prices. As we discuss in our empirical

work, for this assumption to be plausible it is important to focus on an asset that captures well the

information driving the policy studied.

While this representation is flexible, it still imposes restrictions on the family of mechanisms

by which policy operates. Separability lines up well with standard models of asset purchases in the

style of Gertler and Karadi (2011), Greenwood and Vayanos (2014), or the foundation we present

in Appendix B. However, this interpretation prevents policy in some states to affect outcomes in

other states of the world. If such cross-state effects happen, our measurement framework still

correctly identifies the total effect of the policy plan in each state, but cannot link it to actions only

in that state. Doing so would rely on taking a stand on the form of non-separability in the data,

something that can be guided by theory.

Another family of models that does not immediately fit our framework are those in which out-

of-equilibrium beliefs about policy matter. For example, in theories of runs, out-of-equilibrium

beliefs about how policy plays out in a run can rule out runs on the equilibrium path. This is
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a concern common to all event-study approaches: the observed policy news can be associated

with unobserved changes in out-of-equilibrium beliefs. Such beliefs cannot be directly recovered

from observational data because by definition these beliefs are about outcomes that are out of the

equilibrium. While there is no simple solution to this issue aside from comparing the price support

function to a much more structural model prediction, the user of our measurement framework

should keep in mind this limitation.13

1.3.3 Order-preserving

The order-preserving condition assumes that the policy does not change the ranking of the asset

price across states. For example, the policy does not support the price so much in (no-policy) bad

states that it becomes higher than in good states. Mechanically, this condition ensures that the

policy acts as a monotone transport, lending itself to our estimation approach.

This assumption is economically appealing: there is a sense in which such policies are effi-

cient. Indeed, consider a policymaker who targets a given distribution of the price after interven-

tion. Multiple price support functions can lead to this distribution, but an order-preserving policy

minimizes the use of large changes in prices, and likely minimizes the cost of the policy.

In practice, one reason that policy might not be order-preserving are costs (e.g., political) to

expanding policy smoothly. Instead policymakers might prefer to increase interventions in fixed

increments as conditions worsen instead of the smooth example of Section 1.1 — a practice re-

ferred to as “expanding the envelope” in policy circles. In that case, our measurement framework

simply smoothes out these discrete jumps up, but does not substantively affect our conclusions.

More generally, we show that wrongfully making the order-preserving assumption leads to

conservative estimates of the conditional nature of the policy. Any other price support function

rationalizing the data must be more asymmetric than our estimate. Appendix D formalizes these

arguments.

1.3.4 Invariant stochastic discount factor

The last assumption restricts the behavior of the stochastic discount factor between date 0 and date

1. Such an assumption is necessary because the response of prices to the announcement of the

13Bocola and Dovis (2019) is an example of such a structural approach in the context of debt crises.
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policy (date 0) reflect a combination of changes in the actual distribution of implementation prices

(date 1) and changes in the stochastic discount factor between the two dates (that is, between

date 0 and date 1). Condition 4 offers the simplest possible take on this issue by assuming that

the stochastic discount factors between the two dates are identical with and without the policy

intervention, that is m(s) = m′(s).

This assumption brings some flexibility along two dimensions. First, it does not assume coin-

cidence of risk-neutral and historical probabilities (which would be m(s) = m′(s) = 1). It also

does not assume that the econometrician knows the stochastic discount factor or is able to recover

it from prices.

Second, this assumption does not put any restrictions on the determinants of prices at date 1

or after that. In particular, we do not take a stand on the mechanisms through which the purchases

at date 1 affect the price. In the example model of the previous section, this means that we do

not make assumptions about where M comes from, and allow it to come from changes in future

stochastic discount factors. In fact, in our applications, an appealing mechanism for why asset

purchases are effective is through effects of purchases on risk premia from date 1 onwards.14

While condition 4 is flexible on these two dimensions, it takes a strong stance on the invariance

of discounting between announcement and implementation. If we go to the other extreme and put

no restriction at all on the short-term stochastic discount factors, virtually any change in risk-

neutral distribution can be mathematically explained by a pure change in the stochastic discount

factor.15 However, in basic models, or in unconditional data, variation in the short-term stochastic

discount factor plays a modest role in asset price variation, and even more so in the shape of price

movements across the state space. Appendix C.1 reviews these standard observations.

Still, for large policy announcements, the response of the SDF could have a sizable effect, and

we propose two ways to quantitatively assess how this response can affect our conclusions. We

rely on a much weaker form of invariance and start by the premise that changes in price in various

states might pass through to the stochastic discount factor. In words, if the intervention changes

14Formally, if we assume that the asset pays off the random amount Xτ at a future date τ > 1, we have: p0 =
E0[m1(s)p1(s)] = E0[m1(s)E1(m1,τXτ |s)]. Condition 4 assumes that m1(s), the stochastic discount factor between
date 0 and 1, is unaffected by the policy, but allows the policy to work through changes in m1,τ .

15Specifically, the measures implied by FQ
p1 and FQ

p′1
must be absolutely continous with respect to each other; that

is, have the same set of probability-0 events. In this case, the change in risk-neutral distributions can be explained by
g = 0 and m′(s)/m(s) = dFQ

p′1
/dFQ

p1 .
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the value of prices in different future states, it might also change how investors value those states

from today’s perspective. For example, in a segmented market with specialized investors, changes

in the price of the asset in a given state affect these investors’ wealth, and therefore their marginal

utility. In equilibrium this translates into a change in the stochastic discount factor for that state —

a mechanism present in the model we consider in Appendix B. Within a broader view of markets

the pass-through of the policy to the stochastic discount factor is mediated by the portfolio share

of the marginal investor in the targeted assets, but also captures potential spillovers of the policy to

other assets, or other general equilibrium effects affecting the marginal investor.

We show two results. First, irrespective of the form of this pass-through, our empirical method

recovers the correct price support function g if it is constant. Second, if one takes a stand on the

intensity of this pass-through, one can adjust our method to recover the correct g.

Testing the null hypothesis of a constant price support. Consider the null hypothesis that the

policy provides the same proportional price support in all states of the world. We show that the

approach of Definition 1 recovers the price support irrespective of how the pricing kernel responds

to change in prices under this null hypothesis.

Proposition 2. If the true price support function g(.) is constant, conditions 1-3 of Proposition 1

hold, and the pricing kernel before and after the intervention can be written:

m = Θ (s, p1(s)/p0) ,

m′ = Θ
(
s, p′1(s)/p′0

)
for the same function Θ, then equation (5) correctly recovers the price support function.

The empirical content of this proposition is that finding a non-constant g reveals the presence

of state contingency in the price support. What is the family of pricing kernels for which this result

holds? In words, they depend on two elements: the state of the world at date 1 (s), and the return

of the asset between date 0 and date 1 (p1/p0 before the announcement, p′1/p′0 after). This second

component encodes in a flexible way the pass-through of the asset price to the pricing kernel. For

example, a CRRA model with the asset representing total wealth is Θ(s, R) = R−γ, with γ the

coefficient of risk aversion, and R the asset return. Many asset pricing models also feature pricing
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kernels determined by asset returns: other utility functions, loss aversion, etc.

Intuitively, a constant price support shifts all date-1 prices up by a certain proportion g. This

does not change the nature of the risk of the asset. Indeed, the date-0 price increases by the same

proportion g, the distribution of returns between dates 0 and 1 is unchanged, and so is the pricing

kernel. Appendix Section C.2 derives the result more formally.

Adjusting estimates for endogenous risk premia. By taking a stand on the pass-through of

asset price to the stochastic discount factor, we can go further and provide estimates of the price

support function that take into account this effect. Specifically, we replace condition 4 by the

following.

Assumption 5. Endogenous pricing kernel. The pricing kernel is m = θ(s) p0
p1

before the an-

nouncement, and m′ = θ(s) p′0
p′1

after the announcement.

This assumption allows the announcement to affect the pricing kernel with a unitary pass-

through. This endogenous part of the pricing kernel is the same as that of a log-utility investor

with all her wealth invested in the asset.16 Beyond this specific theoretical motivation, we show in

our empirical application that this value implies a large risk premium, which is also very responsive

to the distribution of the asset. Therefore, it leads to conservative estimates of the price support

g(.) accounting for risk premium effects.

The following proposition shows how to recover the price support function when replacing

condition 4 by this unitary pass-through.

Proposition 3. Under conditions 1-3 of Proposition 1 as well as Assumption 5, the price support

function g(.) is the unique solution to equation (5), where the risk-neutral distribution is replaced

by the forward-neutral distribution FN , which can also be obtained from option prices:

dFN (p1) = E[θ(s)|p1]dF(p1). (9)

In words, instead of focusing on matching the invariant risk-neutral distribution before and

16Martin (2017) and Kremens and Martin (2019) use pricing kernels taking a similar form to construct predictions
for stock returns and exchange rates using option prices. Our assumptions are different: in our setting, θ(s) can take
any shape as long as it is unchanged by the announcement while they impose restrictions on the shape of θ(s), but not
on its time series properties.
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after the announcement, we concentrate on a distribution affected only by the exogenous part of

the pricing kernel.17 Thus, this distribution is not affected by the policy. How can we recover

this distribution using options? The basic idea is to use option contracts that are expressed in

the numeraire of the asset return, so that they cancel out with the endogenous part of the pricing

kernel. While such contracts might seem unusual, we show that they can be replicated very simply

by combining the same calls and puts as in our baseline case. Appendix Section C.3 derives these

results.

This leaves us with an alternative estimate to compute the price support function g(.). By

measuring both our baseline and this alternative, researchers can simply assess the sensitivity of

their conclusions to changes in the SDF. We follow this recommendation in our empirical exercises.

2. Corporate Bond Purchases in 2020

We turn to our main empirical application, the March 2020 Federal Reserve announcement of

corporate bond purchases. We start by discussing our identification setting.

2.1 The Announcement, Price Response, and Identification

On March 23, 2020 the Federal Reserve announces purchases of investment-grade corporate bonds

and investment grade corporate bonds ETFs through the Secondary and Primary Market Corporate

Credit Facility (SMCCF and PMCCF). The announcement immediately raises investment-grade

corporate bond prices by around $500 billion in market value. The announced capacity of corporate

bond purchases on March 23 was $300 billion, but the Fed left unclear the total amount they would

buy. Ultimately, purchases occurred around three months later and total only around $15 billion,

0.2% of the market capitalization of investment-grade corporate bonds as of June 2020. No further

purchases occur afterwards. Haddad et al. (2021) and Boyarchenko et al. (2020) offer in-depth

accounts of the Fed’s announcement and additional details on purchases.

17The forward-neutral measure prices cash-flows expressed using the asset as a numéraire (see Geman et al. (1995)
for more discussion). Specifically, for a random payoff x the price can be obtained using the risk-neutral distribution
p = E[mx] = EQ[x]. It can also be obtained using the forward-neutral distribution: E[mp × x/p] = EN [x/p],
where x/p is the payoff expressed in number of units of the underlying asset. Appendix C.3 shows how to construct
this distribution empirically.
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The March 23 announcement constitutes the setting of our event study. As such, it is crucial to

assess whether it is indeed the driver of price movements in investment-grade corporate bonds at

that point, following the discussion of Section 1.3.1. We track this price using iShares’ investment-

grade corporate bond ETF (LQD) following Haddad et al. (2021). This large ETF captures the im-

mediate price response for the broad universe of investment-grade corporate bonds without having

to obtain the transaction level data of individual bonds which trade much less frequently.18

Several elements support the view that the announcement explains the change in the price of

the index over this period. Figure 2 reports the cumulative return of LQD around our event. The

price of the ETF immediately jumps up when markets open after the announcement and closes

up 7%. This large abnormal movement is similar using the return at the market open or close

on March 23, suggesting that little additional news arrives after the announcement on this day.19

However this observation still leaves open the possibility of other economic news between the mar-

ket close on Friday and the market open on Monday. If that were the case, one would expect that

other economic-sensitive assets like stocks or high-yield bonds would also respond to such news.

Figure 2 shows that high-yield corporate bonds and the stock market are flat or slightly down from

Friday to Monday, cutting against the importance of other news. This lack of response by similar

but non-targeted assets also suggests that the announcement itself did not reveal information about

the broader economy. Appendix G.1 confirms this pattern formally using event-study regressions

in which we control for the stock market, high-yield bonds, and Treasury bonds.

The event-study identification assumption in Proposition 1 also requires the event to be unan-

ticipated. The context of the announcement is suggestive of this view. This policy intervention is

the first time the Fed enters the corporate bond market, a policy that had previously never been

explicitly considered. While it is impossible to provide sharp evidence of no anticipation, we show

in Appendix E that our inference is robust to relaxing this assumption and allow a mild amount of

anticipation. In fact, the intuition of standard event studies holds here: if the policy was somewhat

anticipated or not perfectly credible, the price support function would be biased towards 0.

18Haddad et al. (2021) show a similar response in individual bond prices using TRACE data. See also O’Hara and
Zhou (2020), Boyarchenko et al. (2020), Kargar et al. (2020), Gilchrist et al. (2020), D’Amico et al. (2020) who study
the effect of Fed interventions during this period on market liquidity and corporate bond prices.

19A concern in the opposite direction is that the narrow one-day window might not leave enough time for the
market to process the news. Using a longer three-day window increases the raw and abnormal excess returns to about
14% and 10%, respectively. We favor the narrower window for this event given that volatility was very high and also
the fact that the CARES act was signed into law four days after this announcement.
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Figure 2: Event Study Price Responses.
This figure reports the cumulative return on the investment grade bond ETF, high yield bond ETF, and S&P500 at 10
minute intervals. The Fed purchase announcement occurs the morning of March 23 (vertical dashed line).

2.2 Option Prices and Changes in the Distribution of Corporate Bonds

We now turn to option prices on the same investment grade bond ETF around the announcement.

Figure 3 Panel A plots the implied volatility curve for three-month options on the investment-grade

bond ETF (LQD) on the trading day before the announcement was made compared to the end of

the day on which the announcement was made. Three months is the maturity with most liquidity

and is also the horizon at which total amount of bonds the Fed would actually buy becomes clear.

Implied volatilities decrease across all strikes, but the drop is most pronounced in the left tail

(deltas below 30%). This pattern implies that the risk-neutral probability of extreme low prices is

particularly reduced following to the announcement. Panel B reports the risk-neutral CDFs implied

by the option prices following Breeden and Litzenberger (1978), confirming a substantial drop in

the probability of prices in the left tail.

2.3 Conditional Price Support

We apply our measurement framework to recover the conditional price support provided by the

Fed. Let g(p) denote the conditional price support of the Fed policy as a function of the non-

intervention price p. That is, p denotes the price of investment-grade corporate bonds absent
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Figure 3: Option Implied Volatility and CDF Before and After the Announcement.
This figure shows the option-implied volatility (Panel A) and risk-neutral cumulative distribution function (Panel B)
for the investment-grade corporate bond ETF (LQD) on March 20 (dashed line) and March 23, 2020 (solid line). The
time-to-maturity of the options is 3 months.

Fed intervention and should be thought of as capturing the underlying state of the corporate bond

market.

Figure 4 plots the function g(p) expressed as a percentage of the no-policy price p. First,

g(p) is not flat like an unconditional price support would imply, but instead is strongly downward

sloping, particularly for low values of the price. At values where the price drops by 20-30%, the

slope of the price support function is nearly -1, which suggests a policy close to a price floor —

that is, each dollar lost in this region is offset by conditional price support by the Fed. The price

support function strongly resembles the payoff of a put option, lending support to the view of a

“policy put.” This suggests that bond investors perceived a backstop where stronger intervention

would occur if corporate bond prices fell further. To gauge magnitudes it is worth picking two

points on the figure. If, absent any policy intervention, prices would have increased by 20%, Fed

support would push the price up by an additional 2%. If prices would have declined by 35%

instead, the Fed would push the price up by around 40%. Thus, the asymmetry is economically

very large.

A natural question is whether these movements in the implied volatility curve are typical and

hence could have happened by chance, as opposed to being driven by the policy announcement.

For example, it is well understood that tail risk movements are an important driver of returns both

in equity and corporate bond markets. The 95% confidence interval in the gray shaded region in
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Figure 4: Conditional Price Support Function g(p).
This figure shows the implied price support (expressed in percent) as a function of the pre-policy price. The pre-policy
price is normalized to 100 before announcement.

Figure 4 indicates statistically significant price support for the left tail of the distribution, and only

insignificant estimates of price support at the upper end. Thus, the pattern we find is extremely

unlikely to emerge by chance alone, consistent with the unusually large overall announcement

return of 7%. Furthermore, the null hypothesis of a constant price support (i.e., a proportional shift

in distribution at this level) is also strongly rejected, with values of the price support in bad states

of the world being sharply statistically higher than 7%.

To construct these confidence intervals, we start from the sample of all dates between January

2010 and February 2020. For each pair of consecutive trading days, we compute the risk-neutral

CDF on each day, and find the price support function connecting them. A simple bootstrap would

then compute for each point p on the x-axis of this price support function the sample distribution

of g(p) outcomes in the y-axis. However, we need to account for the fact that the data is highly

heteroskedastic. In particular, there is much more volatility for our event than on a typical day.

We follow the standard treatment of heteroskedasticity when volatility is measured: rescale the

data to make it comparable across dates. In our setting, this means rescaling observations on the x

and y-axis by the at-the-money implied volatility on each date to make to make them have essen-

tially the same volatility. We then bootstrap based on these rescaled values. Appendix H provides

24



step-by-step details of this calculation and considers alternative treatments of heteroskedasticity.

Appendix H.2 shows that even large returns in the rest of the sample do not lead to as much asym-

metry as on the day of the announcement, assuaging the concern that large shocks mechanically

have a larger impact on the left tail of the distribution.

Appendix G presents additional tests confirming that this finding is a robust feature of the data.

Appendix G.7 demonstrates that our results are robust to accounting for bid-ask spreads in option

prices and discusses the liquidity of the options we use. Appendix G.5 uses a longer window for

the event study to allow more time for markets to react at the cost of less tight identification. While

magnitudes in this case are larger compared to the results in the one-day window, the asymmetric

pattern is similar.

How much did promises contribute to the overall price movement? We next compute the

fraction of the initial announcement return stemming from the left tail asymmetry we found. To

do so, we construct the announcement return for a counterfactual price support function without

promises. Recall that by definition E∗[p1g(p1)]/p0 is the one-day announcement return of 7%

discussed earlier. To assess the role of downside support, we shut it down: we assume that the

Fed supports the price by a constant amount in the downside, equal to the support in the case of a

median change in the no-policy price, g(pmed). Formally, we define g̃(p) = g(p) when p > pmed

and g̃(p) = g(pmed) when p ≤ pmed. Appendix Figure OA.4 gives a graphical representation of

g̃(p). We compute the counterfactual announcement return E∗[p1 g̃(p1)]/p0 using the risk-neutral

probabilities of each state. Comparing this counterfactual number to the actual announcement

return quantifies the effect of the policy put. We find that 50% of the overall effect on prices comes

from conditional policy to support prices more heavily in adverse states. Thus, the policy put

option by itself boosted the total bond market value by around 3.5% or about $250 billion.

2.4 Interpreting the Asymmetric Price Support Function

Our main methodology delivers the conditional price support, a measure of the impact of the policy

in each state of the world. We now discuss how to tie this impact to specific actions by taking a

stronger stance on the economic mechanism and using further sources of information. In this

application, we aim to estimate the state-contingent quantity of investment-grade corporate bonds

25



purchased by the Fed. Beyond quantifying variation in this quantity, it is particularly interesting to

assess whether market participants forecasted purchases above $300 billion, the size of the facility

announced on March 23.

Baseline calculation: constant multiplier. A natural starting point is the assumption that the mul-

tiplier, or price impact, of purchases M is constant across states. In this case, g(p) = MQ(p),

with Q(p) the fraction of total supply purchased.

Immediately, this gives relative statements on purchase amounts across states by using the ratio

of g(p) for two different states. We use the state where bond prices fall 35% as a reference “bad

state.” The Fed would buy 6 times as many bonds in this bad state compared to the state where

prices do not change (p = 100), and 20 times as many bonds compared to the case where prices

appreciate by 20%. These are large relative magnitudes.

Estimating absolute quantities requires knowing the multiplier M for corporate bonds and the

total supply. In 2020, the total supply of investment-grade corporate bonds is around $7 trillion.20

For the multiplier, we follow Chaudhary et al. (2023) who estimate M = 3.5 for corporate bonds.

This number is similar to other estimates in the literature: Darmouni et al. (2022) find a multi-

plier around 6, while the estimated price impacts in Bouveret and Yu (2021) correspond to values

between 2.3 and 5.6.21

These assumptions yield that the Fed would purchase around $800 billion of bonds in the

bad state, $135 billion in the case of no change in price, and $40 billion in the good state with a

10% appreciation. Using values for M at the bottom of the range found in the literature (a more

elastic bond market) would increase the implied quantities. Recall that the announced facility size

on March 23 was $300 billion, so the numbers in the bad state imply a substantial expansion of

the facility size originally announced. Interestingly, they remain in line with the expansion of the

facility two weeks later on April 9 to about $900 billion. The likelihood of an expansion of the

intervention appears robust: to generate the price support of 40% in the left tail with a $300 billion

purchase would require price impact of about M = 10. Such a number is significantly higher than

20SIFMA reports $8.8 trillion in US corporate bonds outstanding at the end of 2019. Given that the ratio of
investment-grade to high yield bonds is approximately 6 to 1, this results in around $7 trillion in investment-grade
corporate bonds. Appendix G.4 provides several alternative data sources which produce a range of investment-grade
corporate bond supply between $6-8.5 trillion. We take $7 trillion as the average across these sources.

21Estimates at the individual bond level instead of the asset class level tend to be an order of magnitude smaller.
In other asset classes, Gabaix and Koijen (2021) estimate M ≈ 5 for the stock market and Greenwood and Vayanos
(2014) find a multiplier around 0.4 for Treasuries using shocks to supply.
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estimates in the literature.

The quantity of $40 billion in the relatively good state is of comparable magnitude as the

actual purchases of $15 billion that the Fed implemented. This interpretation based on quantities

fits the narrative provided by Jerome Powell in a testimony given in June 2020 that “markets are

functioning pretty well, so our purchases will be at the bottom end of the range that we have written

down.”

State-contingent multiplier. The asymmetry of the price support could also be driven by a multi-

plier that changes across states of the world, M(p). As one extreme, we ask how much variation in

multiplier is necessary to rationalize the price support function absent any variation in purchases.

This view leads to implausible values for the multiplier. First, it requires an average multiplier

across states of over 30, at least an order of magnitude higher than estimates in the literature.22

Second, the multiplier in the bad state would have to be around 200 (that is, purchasing 1% of the

market cap of corporate bonds raises their price by 200%), multiple orders of magnitude above

other estimates and intuitively implausible. Third, the variation in multiplier across states would

also be an order of magnitude more extreme than estimates in the literature.

Still, while conditional policy effectiveness alone is unlikely to explain the price asymmetry

we see, it could impact the quantities we estimated above. The literature on corporate bonds does

not offer estimates of variation in multipliers across states, so we rely on the work on Treasuries for

a quantification. Greenwood and Vayanos (2014) estimate that the price impact of Treasury supply

is 25% higher for a one-standard deviation shock to arbitrageur wealth, where these shocks are

proxied for using realized bond returns. Thus, a back-of-the-envelope calculation using implied

volatility of at-the-money options in our setting would imply a multiplier that is roughly 50%

higher in extreme bad states and 25% lower in extreme good states than our baseline. For quantities

purchased, this would imply more than $500 billion in purchases in the extreme bad state instead

of $800 billion — still substantially over the announced cap of $300 billion — and $50 billion in

purchases in the relatively good state instead of $40 billion. Appendix I presents these calculations

in more detail and discusses additional evidence suggesting that multipliers are relatively stable

across states.
22For realized purchases of $15 billion, or 0.21% of total supply, to lead to an announcement return response of

7%, the average multiplier would need to be 7/0.21 ≈ 33.
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Changes in the pricing kernel. Another consideration is the role of changes in the pricing ker-

nel in explaining the asymmetric price support. Intuitively, conditional purchases might change

relative state prices.23 The strict assumptions of Proposition 1 ruled out such a change.

Under the view that changes in the pricing kernel affects all markets, the lack of announcement

response in other asset classes supports the assumption that there were no broad changes in the

pricing kernel.24 For example, a reduction in representative investors’ risk-aversion would impact

high-yield bonds more than investment grade due to their higher exposure to credit risk. However,

pricing could also reflect factors specific to the corporate bond market as a consequence of market

segmentation.

Therefore, we favor following the procedure of Section 1.3.4 to quantify the robustness of

our conclusions to changes in the SDF. Recall that if the price support is invariant across states, it

implies an invariant SDF for a wide class of standard models. Hence, if the price support policy was

indeed constant, we would recover a constant support function. Thus, pricing kernel adjustments

can affect the magnitude of our estimates, not their asymmetry.

We include a risk-premium adjustment in our calculations by following Proposition 3. Figure 5

shows the price support in the presence of an endogenous pricing kernel. The asymmetry, with a

much stronger support the left tail, remains sharp in this case. The magnitude of the support is

only dampened by about a third, despite an aggressive adjustment for risk premia. Specifically, our

calculation implies a large risk premium for investment-grade corporate bonds of 16.5%, about

20 times the long-term average of 0.8% reported in Giesecke et al. (2011). We conclude that our

baseline estimates are robust to the presence of changes in pricing kernel.

Multiple equilibria. Finally, it is important to acknowledge that all these interpretations are con-

ditional on the broad set of assumptions outlined in Proposition 3. An alternative framework to

interpret these results that is outside of these assumptions is one that features multiple equilibria.

In such a setting we no longer have separability because the policy impact in a particular state

depends on out-of-equilibrium actions done by the Fed. For example, if the Fed announcement

can coordinate investors in a good equilibrium, this can lead investors to respond differently across

different states — even if the policy action is constant across states, and even if there is no pol-

23For example, Pflueger and Rinaldi (2022) studies a model where policy announcements affect risk-aversion.
24See Appendix G.6 for the comparison with high yield and also Haddad et al. (2021) for more comparisons across

asset classes.
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Figure 5: Risk-Premium Adjusted Price Support.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price,
normalized to 100 before announcement, following Proposition 3.

icy action at all. While in this case we can no longer map state contingent price effects to state

contingent policy, the function g should still be a useful moment to discipline models of this kind.25

2.5 In Which States Was the Fed Expected to Buy?

We have shown that the data is consistent with the market expecting the Fed to provide more price

support in states where bond prices would be low. However, our analysis does not speak to whether

these low price states are due to a deterioration of the credit risk of corporate bonds, high risk-free

interest rates, or a high dislocation of corporate bond prices from fundamentals.

We shed light on this by using options on Treasuries (to capture shifts in risk-free interest

rates) and options on a portfolio of CDS contracts (to capture shifts in underlying credit risk). It

is straightforward to map the price of a corporate bond into the price of an equivalent duration

Treasury bond, a credit risk component (captured by prices of CDS), and a component which we

call “dislocations” also referred to as the CDS-bond basis. We denote the synthetic corporate bond

as the bond price implied by the Treasury yield curve and corresponding CDS prices. We recover

the distribution of this synthetic bond by using the option prices for Treasuries and the invest-

ment grade CDX contract (a portfolio of CDS contracts) and assuming a correlation between the

25Ma et al. (2020) and Eisenbach and Phelan (2022) on bond market fragility are two recent examples of this view.
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Figure 6: Decomposition of Announcement Effects: Basis vs Synthetic Bond.
This figure plots the decomposition of price support coming from the synthetic corporate bond vs the basis between
corporate bond prices and the synthetic corporate bond (constructed using Treasuries and CDS).

CDX and Treasuries equal to the historical average and using copula functions following Haugh

(2016).26 This enables us to decompose our earlier finding into effects driven by movements in the

synthetic bond and the dislocation component. Specifically, Figure 6 shows the conditional expec-

tation of the share of the corporate bond return due to movements in the basis and the synthetic

bond for different states. We find that the asymmetric effect of the announcement on prices is

entirely driven by a sharp reduction in the basis in these bad states of the world. This is consistent

with stronger Fed intervention in states where the corporate bond market is highly dislocated. This

pattern of buying more in states of high dislocations is in line with with the statements from Powell

emphasizing “markets [...] functioning.”

3. Conditional Promises Everywhere

We expand our analysis to a large set of events worldwide in which policymakers announce inter-

ventions in financial markets, and study perceptions of state-contingent policy. We study equity

injections in the US financial sector during 2008, an announcement of large asset purchases by

the Bank of Japan in 2013, the various dates associated with the implementation and unwinding

of quantitative easing (QE) in the United States from 2008-2013, and a set of asset purchase an-

26See Appendix J for details on implementation and robustness to correlation assumptions.
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Table 1: Downside Support Across Policy Announcements.

This table lists the policy announcements we consider and applies our methodology to decompose the announcement
response. We compute the fraction of each announcement return explained by state-dependence in the left tail (addi-
tional price support below the median). The specific events, methodology, and financial instruments are provided in
the text.

Fraction Explained by Left Tail
Event Risk-Neutral Measure Forward Measure
Mar 23 2020 50% 30%
Apr 9 2020 8% 3%
Oct 13 2008 (Paulson Plan) 32% 33%
Apr 3 2013 BoJ Purchase Speech 10% 11%
US Quantitative Easing Events:
Nov 25 2008 3% 2%
Dec 16 2008 28% 28%
Mar 18 2009 21% 21%
Jun 19 2013 7% 7%
ECB Events:
May 10 2010 18% 15%
Jul 26 2012 8% 7%
Aug 2 2012 38% 37%
Sep 6 2012 16% 16%
Average 20% 17%

nouncements by the ECB in 2010-2012 associated with the European debt crisis. While this list is

non-exhaustive, it seeks to illustrate both the role of state-dependence and the uses of our method-

ology to study announcements. We are also limited to events where we have option data on relevant

asset prices for the policy in question. The validity of the event-study assumption for each of these

events is discussed in the papers we refer to hereafter. We investigate quantitatively the sensitivity

of our conclusions to changes in risk pricing.

Table 1 lists all the announcement dates, and reports the fraction of the announcement re-

sponse explained by downside support. We compute this number using our baseline approach

(using the risk-neutral measure) and adjusting for a response of risk pricing (forward-neutral mea-

sure). Figure 7 represents the price support functions. Promises are pervasive: the vast majority

of announcements have an asymmetric price support function with stronger support in the down-

side, and this price support typically explains a sizable fraction of the announcement return. This

downside support is substantial even after we adjust for risk-premia following the approach of

Proposition 3 (Appendix G.3 describes the implementation).

2008 US financial sector bailout. We first study the October 10, 2008 announcement of large
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Figure 7: Price Support Function Across Policy Announcements
This figure reports price support as a function of the pre-policy price, normalized to 100 before the announcement
across policy announcements. The events are described in the text.

equity injections to the banking sector as well as guarantees on various forms of bank debt in an

effort to “restore confidence in the financial system.” This announcement was widely perceived

as communicating a promise to backstop the financial sector. Consistent with this interpretation,

Veronesi and Zingales (2010) find large positive responses of both bank equity and bank debt.27

Our approach offers a way to quantify the state-contingent impact of this promise.

We use option prices on a financial sector index, the Financial Select Sector SPDR Fund. The

price support function — Panel A of Figure 7 — reveals that the policy acted as a put option to

the financial sector. For example, we see price support of 40% if the equity of the financial sector

were to fall by 50% and no price support if the equity of the financial sector increased by 50%.

This asymmetry suggests that the policy was largely effective because of larger interventions

in poor states of the world. Still, we cannot rule out that this stabilization is driven by out-of-

27See also Kelly et al. (2016a) who use options markets to evaluate government guarantees on the financial sector.
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equilibrium actions along the lines of statements by then-Treasury Secretary Paulson that “if you’ve

got a bazooka, and people know you’ve got it, you may not have to take it out.”

2013 Bank of Japan equity purchases. The top right panel of Figure 7 studies Japan on April

4, 2013 after a speech given by Bank of Japan governor Haruhiko Kuroda in which he outlined a

plan to use “every means available” to drive up inflation through large purchases of government

bonds and equities. Charoenwong et al. (2021) systematically study equity purchases by the Bank

of Japan and find that they increase equity prices. We use three-month options on the Nikkei index

in a three-day window around the announcement to estimate the price support function. Here again

we find a strongly asymmetric response, with large price support for adverse states and a flat price

support of around 5% for good states above the current price.

2008-2013 US quantitative easing. Panel C of Figure 7 looks at several US quantitative easing

(QE) announcements using three-month options on the 10-year Treasury Note futures contract.

Treasuries are likely an imperfect asset to study the conditional impact of QE, because future

conditional purchases likely depend on state variables besides the price of the 10-year Treasury,

which our measurement does not capture.

We first focus on three announcements introducing QE following Vissing-Jorgensen and Kr-

ishnamurthy (2011), each of which contained significant news of increased asset purchases. These

are the initial announcement of large scale asset purchases (LSAPs) on November 25, 2008 and the

FOMC statements of December 16, 2008 and March 18, 2009. All three policy announcements

see an increase in Treasury prices (fall in yields) and a price support function that is downward

sloping. The magnitudes are fairly similar with about 3-5% price support in cases where prices

fall, roughly 3% at current prices, and 1-3% when prices increase. The importance of downside

support is also consistent with the observation of Greenwood and Vayanos (2014) that the response

to the initial QE1 program is larger than implied by the multiplier they estimate using long-term

variations in supply.

Interestingly, the initial policy announcement on November 25 is less asymmetric than the

others. One interpretation is that, because the policy was new, it took multiple announcements for

agents to solidify views that the policy was not a one-off and would be increased should conditions

worsen.

We also consider the “Taper Tantrum” on June 19, 2013, where the Fed announced that pur-
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chases would decline and markets had a strong negative reaction. The sign is flipped in the plot so

that the magnitudes across events are more easily comparable. We see an overall decline in prices

(sharp increase in yields) with an upward, rather than downward slope. This announcement is thus

associated with not only a tapering of purchases but also an associated decline in conditional price

support from future purchases. This highlights that our approach can not only identify the presence

of a policy put, but also identifies cases where this policy put is removed or weakened.

These results speak to a broader literature that estimates the channels through which QE op-

erates by using event studies (e.g., Vissing-Jorgensen and Krishnamurthy (2011)). Our findings

suggest that one channel that leads to powerful announcement effects of QE is the expectation of

stronger interventions in bad states.

2010-2012 ECB asset purchases. We now look at announcements of asset purchases by the

European Central Bank from 2010 to 2012. We use announcement dates found by Krishnamurthy

et al. (2018) to have substantial asset price effects. Ideally, for these announcements, we would

like to have options on sovereign bonds for high risk countries in the Eurozone, which is most

directly where the asset purchase announcements were aimed. These options are not available

for the 2010-2012 period. However, Krishnamurthy et al. (2018) show a very broad asset price

response to the announcements. In fact, they estimate that for the vast majority of the events stock

markets respond strongly and in line with debt markets.28 For the set of events we consider, where

the stock market tracks developments in debt markets, we use options on the Euro Stoxx index to

assess conditional purchases. The underlying assumption is that any conditional purchases will be

correlated with the stock index value and that the stock index will respond to purchases in those

states.

Panel D of Figure 7 shows strong effects of conditional policy from these announcements.

Across all four announcements, the extra support in the left tail explains about 20% of the overall

reaction on average. This is expected as part of the goal of the announcements was to promise to do

28This is likely due to different channels than what we saw for investment-grade bonds during COVID. One in-
terpretation is for Europe there was a feared “doom loop” that sovereigns would be unable to pay creditors or roll
over debt and this would lead to substantial declines in economic activity. This could be coming from higher taxation,
strong fiscal adjustments, or losses born by holders of sovereign bonds which included a large portion of the banking
sector in Europe. These losses could lead to a substantial credit crunch that would result in a decline in economic
activity. These broader effects on asset prices allow us to use stock options in place of options on sovereign bonds.
Relative to Krishnamurthy et al. (2018), we omit the August 7 2011 announcement where we see a weaker response
in sovereign bonds and no response in Euro Stoxx.
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“whatever it takes.” While the exact quantities implied by this promise were vague, the intention

to commit to promises in this case was explicit.

Interestingly, the July 26, 2012 speech by Mario Draghi has relatively weaker asymmetry in

the price support function compared to the follow on announcements on August 2 and September

6. The July 26 speech was strong in language but did not give a specific policy plan. Once

this speech was followed with concrete announcements by the ECB a week later (the August

2 announcement), the market priced in stronger conditional price support. The August 2 and

September 6 announcements included the Outright Monetary Transactions (OMT) which were

aimed at purchasing Eurozone sovereign bonds under certain conditions. These findings emphasize

that our method captures the markets reaction to announcements, rather than simply what the

announcement states.

April 9, 2020 high-yield announcement. The announcement of corporate bond purchases by the

Federal Reserve on March 23 focused on investment grade bonds. However, the Fed made an ad-

ditional announcement on April 9, 2020 that expanded the facilities to include high-yield bonds.

If this announcement contains implicit promises, we would expect them to show up particularly

in high-yield bonds. This announcement is useful because we should expect the opposite patterns

for high-yield versus investment-grade bonds compared to March 23. This is exactly what we

see. Appendix Figure OA.7 plots the price support from this announcement following our same

methodology applied to options on a high-yield ETF, HYG. We see the same effects of asymme-

try: price support is very high for low prices, peaking at over 10%, but is much lower at around

5% for higher levels of prices. This provides strong support for implicit promises boosting the

value of high-yield bonds. In contrast, investment-grade is now much flatter, consistent with this

announcement not reflecting any additional promises to investment-grade.

4. Implications of Promises for Market Dynamics: Are the Ef-

fects of Asset Purchases Getting Weaker?

We have shown that many policy announcements appear to convey a put option of more inter-

vention in bad states. If the perception of these policy puts is persistent, this will have long-term
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implications for market dynamics. For example, the market might believe that the Federal Reserve

is now more likely to step into the corporate bond market whenever it gets distressed, which would

affect the response of bond prices to bad economic news, and lower ex-ante tail risk in these mar-

kets.29 Furthermore, promises in early policy announcement can lead to a weaker response of asset

prices to subsequent announcements, despite no change in policy multiplier. This occurs because

latter announcements are at least partially anticipated and because they do not contain as much

new information about future interventions.

The broad pattern of response to QE announcements is consistent with this prediction. Figure 8

collects estimates of this response from the literature for the US, UK, and Europe: black bars report

the yield change at announcements and gray bars the multiplier when the announcement comes

with specific quantities. Both yield response and multiplier are strongest at early announcement

and quickly decay, an observation also made by Hesse et al. (2018), Meaning and Zhu (2011), and

Bernanke (2020).30

A challenge to interpreting this evidence with the promises view is that expectations of inter-

ventions for later announcements might not be driven by other factors than the realization of the

initial promises. In the UK setting, one can take advantage of survey data to measure expectations

and focus on the unexpected component of the announcements. Specifically, Busetto et al. (2022)

construct measures of surprise intervention and relate them to yield responses for Gilts. We re-

produce their data below, fitting a regression line through all announcements except QE1.31 We

see that while the linear regression fits well the data, the response to QE1 appears about twice as

powerful as predicted by this relation. This observation supports our second mechanism, whereby

the presence of promises in early announcements leads to seemingly inflated multipliers.

While this interpretation is consistent with our evidence from option prices, we cannot com-

pletely rule out that multipliers have changed over time. For example, it could be that multipliers

are larger when the economy is in particularly bad shape, and this corresponds with when initial

QE announcements occured. Some of the evidence around the COVID-19 shock of 2020, another

period of significant market distress, cuts against this view as fully explaining the patterns in the

29Appendix Section K.2 provides suggestive evidence that the covariance of corporate bond returns with risk and
economic news has changed after the Fed announced their first ever direct intervention in this market.

30Relatedly, Fabo et al. (2021) finds that estimates of the effect of QE vary significantly in the literature, in part due
to which announcements are used.

31We thank these authors for sharing their data with us.
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Figure 8: Weakening Announcement Effects of Asset Purchases
This figure plots announcement effects to asset purchase announcements made by the US Federal Reserve, Bank of
England, and the ECB. See Appendix Section K.1 for details; numbers come from various studies including Joyce
and Tong (2012), Meaning and Zhu (2011), Gagnon et al. (2018), Vissing-Jorgensen (2021), and Krishnamurthy et al.
(2018).

data. While within three weeks of the initial March 15 announcement, the Fed had purchased over

$1 trillion in Treasuries, the price response remained modest. For example, Vissing-Jorgensen

(2021) reports that “an increase of 0.1 (buying 10% of supply) leads to a 5.35 bps larger decline in

yields”, at least an order of magnitude lower than multiplier estimates focusing on other events.32

Furthermore, these results for Treasuries during COVID contrast sharply with the large response

for corporate bonds during the same period. A natural interpretation is that the key difference be-

tween these two interventions is that the Fed had never before purchased corporate bonds and thus

the announcement was a surprise.

32These estimates accumulate not only the response to announcements but also to realized purchases. A caveat is
that these interventions might have been of market-functioning nature, and worked through a different mechanism.
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Figure 9: Surprise Purchases and Response of Gilt Yields. This figure uses data from Chart 5 of
Busetto et al. (2022). Each point represents the the change in 10-year Gilt yield and the purchase
surprise formed using survey data for a Bank of England QE announcement (see Busetto et al.
(2022) for details). The dashed blue line corresponds to a regression of the yield surprise on the
purchase surprise, excluding the first announcement (red point labeled QE1).

5. Conclusion

We provide a framework and methodology to evaluate the state-contingent impact of policy, which

we apply to several policy announcements. We find a large role for state-contingent policy that

indicates more intervention if conditions worsen. In our main empirical setting, the announcement

of corporate bond purchases during the COVID-19 crisis, we find evidence that markets expected

five times more price support in crash scenarios relative to the median state and significantly more

relative to good states. This policy put of significant expansion in the size of the intervention in bad

states explains a large share of the market response to the announcement. We extend our analysis to

many other policy announcements in the US, UK, Euro area, and Japan, and find that perceptions

of downside support are pervasive. The state-contingent policy view also helps rationalize jointly

the apparently large multipliers from initial policy announcements and weakening or disappearing

announcement effects for later announcements of the same policy.
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Kelly, Bryan, L’uboš Pástor, and Pietro Veronesi, 2016b, The price of political uncertainty: Theory and evidence from
the option market, The Journal of Finance 71, 2417–2480.

Kitsul, Yuriy, and Jonathan H Wright, 2013, The economics of options-implied inflation probability density functions,
Journal of Financial Economics 110, 696–711.

Kremens, Lukas, and Ian Martin, 2019, The quanto theory of exchange rates, American Economic Review 109, 810–
43.

Krishnamurthy, Arvind, Stefan Nagel, and Annette Vissing-Jorgensen, 2018, Ecb policies involving government bond
purchases: Impact and channels, Review of Finance 22, 1–44.

Ma, Yiming, Kairong Xiao, and Yao Zeng, 2020, Mutual fund liquidity transformation and reverse flight to liquidity,
Working paper.

Martin, Ian, 2017, What is the expected return on the market?, The Quarterly Journal of Economics 132, 367–433.

Meaning, Jack, and Feng Zhu, 2011, The impact of recent central bank asset purchase programmes, BIS Quarterly
Review, December .

Moreira, Alan, and Alexi Savov, 2017, The macroeconomics of shadow banking, Journal of Finance .

Nakamura, Emi, and Jón Steinsson, 2018, High-frequency identification of monetary non-neutrality: the information
effect, The Quarterly Journal of Economics 133, 1283–1330.

O’Hara, Maureen, and Xing Alex Zhou, 2020, Anatomy of a liquidity crisis: Corporate bonds in the covid-19 crisis,
Available at SSRN 3615155 .

O’Hara, Maureen, and Xing Alex Zhou, 2021, Anatomy of a liquidity crisis: Corporate bonds in the covid-19 crisis,
Journal of Financial Economics 142, 46–68.

Pflueger, Carolin, and Gianluca Rinaldi, 2022, Why does the fed move markets so much? a model of monetary policy
and time-varying risk aversion, Journal of Financial Economics 146, 71–89.

Piazzesi, Monika, 2005, Bond yields and the federal reserve, Journal of Political Economy 113, 311–344.
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Online Appendix

A. From Option Prices to Risk-Neutral Densities: Implemen-
tation.

Our numerical approach to recover the state price density is standard. We obtain prices and use
the standard Black-Scholes formula to translate prices into implied volatilities. We then fit a cubic
spline to the implied volatility curve. However, we are careful to not extrapolate the curves. We
thus only recover the option-implied risk neutral density for the range where we have option prices.
Armed with this function, we can easily compute derivatives of option prices numerically for the
range of liquid strikes. Specifically we evaluate the Black-Scholes formula for different strikes and
the associated implied volatilities. We use a spline smoother on the implied volatility curve and
choose a step size and smoothing parameters that produce non-negative risk-neutral densities. The
required step and smoothing parameter varies according to the quality of the underlying option
data. We then compute first and second differences to recover the implied risk-neutral cumula-
tive distribution function or probability density function. As a consequence of our choice to not
extrapolate the implied volatility curves we only obtain the CDF for finite intervals. While this
limitation precludes the usual application of the result of Breeden and Litzenberger (1978) (pric-
ing arbitrary option contracts), we we are still able to recover exactly the function g(.), only over
a finite interval.

B. Economic Model
We introduce a simple model in the style of Vayanos and Vila (2021) and Greenwood and Vayanos
(2014) to understand the economic effects of purchase announcements and to further clarify the
assumptions made in our main empirical section. We adapt the model from Vayanos and Vila
(2021) because it is the leading framework the literature has used to think about the direct asset
pricing effects of asset purchases (e.g., Bernanke (2020)).

There are three dates, 0, 1, and 2. There is a risky asset in unit supply paying off X at date 2
where we assume X is lognormal with ln(X) ∼ N(µ, σ2). There are three agents: a specialized
arbitrageur, inelastic investors, and a policy maker (e.g., a central bank). At date 0, the policy
maker announces asset purchases to be implemented at date 1.

The specialized arbitrageur has log utility over final wealth and chooses their portfolio alloca-
tion in periods 0 and 1 between the risky asset and a risk-free asset. We take the risk-free rate as
exogenous and label its gross return R f ; denote r f = ln(R f ). We keep the risk-free rate constant
for simplicity but this isn’t necessary for our conclusions. The arbitrageur is endowed with shares
of the risky asset worth W0 at date 0.

Inelastic investors have WI dollars of the risky asset at date 0 and are price inelastic. They can
be thought of as insurance companies, pension funds, or other institutions that hold a large fraction
of the bond market but do not trade frequently or are inattentive. In contrast, the arbitrageur
should be thought of as a dealer bank, hedge fund, or other active trader. Inelastic investors have a
stochastic demand shock at date 1 that leads them to sell B̃ dollars of the asset. It is convenient to
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define b̃ = B̃/W1 as the dollar sales made by the inelastic investors as a fraction of the arbitrageurs’
date 1 wealth.33 This fire sale shock is the only source of date 1 uncertainty. The fire sale shock
depresses prices but is independent of fundamentals of the asset payoff. While the COVID-19
episode fits well with this fire-sale interpretation, one could alternatively consider fundamental
cash flow shock at date 1, that is a shock to date 1 cash-flow expectations. Such an approach might
be more in line with other episodes with asset purchase announcements such as quantitative easing.

We solve for date 1 prices and quantities, then use these to arrive at date 0 prices. The arbi-
trageur’s first order condition at date 1 can be approximated by

α1 =
E1[ln(X/P1)]− log(R f )

Var1(ln(X/P1))
=

µ − p1 − r f

σ2 (OA.1)

where α1 is the arbitrageur’s portfolio share in the risky asset, X/P1 denotes the gross return on
the asset from date 1 to date 2, p1 = ln(P1), and E1[.] denotes the conditional expectation taken
at time 1.

The central bank purchases q of the asset at date 1, where we denote q as a fraction of the
arbitrageur’s date 1 wealth. We allow this amount q to be stochastic from the perspective of time
0, and correlated with the fire sale b̃. For example, the central bank could purchase more in states
where the fire sale shock is larger to dampen price dislocations.

Because the arbitrageur absorbs the net supply imbalance, market clearing for the asset at date
1 implies that α1 − b̃ + q = 1 so that α1 = 1 + b̃ − q. Combining this with the arbitrageur’s first
order condition, and solving for p1, gives

p1 = σ2(1 − b̃ + q) + µ − r f (OA.2)

This equation gives a multiplier σ2 for the effect of asset purchases q on the (log) price p1.
Higher purchases q remove the asset from the arbitrageur’s balance sheet and raise prices, and vice
versa for fire sales b̃. Since q is normalized by the arbitrageur’s wealth, P1

W1
σ2 gives the multiplier

in the more standard units of a fraction of total market capitalization. If the central bank purchased
1 percent of the total market capitalization of the asset, the price would increase by P1

W1
σ2 percent.

If arbitrageur capital is a small portion of the wealth invested in the risky asset, the multiplier will
be large because purchases or sales are absorbed by a relatively small amount of active capital. We
also note that the multiplier is constant and does not depend on the realization of the state b at date
1.

The date 1 pricing equation shows that this framework can naturally explain the ”weakening”
effect of follow on purchase announcements. Consider the difference between p1, the price of date
1 after the actual purchases are implemented, and E[p1|b], the price of the asset right after the
selling shock b is realized but just before the date 1 purchases q are implemented,

p1 − E[p1|b] = σ2(q − E[q|b]) (OA.3)

Only purchases that deviate from what was expected given the announcement in date 0 have
any effect, and when the policy maker simply fulfills their promises the effect is exactly zero. This

33This shock can also be interpreted as affecting total supply instead of sales by the inelastic investors. For example,
it could be the consequence of firms’ large debt issuance needs during COVID-19.
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zero effect does not mean that the date 1 intervention is ineffective, but simply that it was already
reflected in the date-0 price response.34

Purchases have no effect on the exogenous asset fundamentals X in the model, and thus they
move prices only through their affect on the asset risk premium from date 1 to 2. This also implies
that date 2 pricing kernel will change with asset purchases q. Because the agent has log utility, the
pricing kernel is given by W1/W2 or the inverse return on the arbitrageur’s wealth from date 1 to
date 2. Labeling the pricing kernel as m2 we have

m2 =
(
α1R2 + (1 − α1)r f

)−1
=
(
(1 + b̃ − q)R2 + (q − b̃)r f

)−1
(OA.4)

Intuitively, the pricing kernel changes when purchases q are made because this is when risk is
actually removed from the arbitrageur’s balance sheet. This pricing kernel effect will be reflected
in date 0 prices, even in the case where the pricing kernel from 0 to 1 remains unchanged. To see
why, note that the time 0 price is the discounted time 1 price but the discounting between 0 and 1
remains unchanged. Since the time 1 price has risen, the time 0 price will also rise. This shows
how asset purchases can impact prices by moving future risk-premium even if they do not impact
the pricing kernel between the announcement date and the asset purchase date as we assume in our
baseline analysis.

At date 0, the arbitrageur’s first order conditions for the risky and risk-free asset, respectively,
give E0

[
W0
W1

P1
P0

]
= 1 and E0

[
W0
W1

R f

]
= 1. Market clearing at date 0 implies α0 = 1 so that

the arbitrageur invests fully in the risky asset. Since the inelastic agents do not buy or sell at
date 0, the arbitrageur must hold on to the shares they are endowed with in equilibrium. This
implies W1/W0 = R1 ≡ P1/P0 where R1 is the risky asset return. This trivially means that
E0

[
W0
W1

P1
P0

]
= 1. Using E0

[
W0
W1

R f

]
= 1, we have

P0 =
1

R f

1

E0

[
1
P1

] (OA.5)

It follows from the expression above that a date 0 announcement by the central bank to pur-
chase a constant share of the asset at date 1 does not change the pricing kernel between dates 0
and 1. Because the intervention pushes up prices proportionally both at date 0 and date 1 it does
not change asset risk between these dates. Thus, our framework recovers the correct price support
function.35

Deterministic purchases do not affect the risk premium at date 0 for two reasons. The first is
that purchases, whether deterministic or state-dependent, do not remove risk from the arbitrageur

34While we consider here one announcement date paired with one purchase date, it is straightforward to extend the
model to have multiple announcement dates paired and multiple implementation dates dates. The key intuition is that
the first announcement reveals the policy rule that the policy maker will adopt in the follow on announcements. In this
way the response to the first announcement is driven not only by the immediate follow-on purchases but also by the
follow-on announcements which themselves will appear ineffective.

35Note that g(p1) = (F−1
p′1

(Fp1(p1)) − 1), where F and F′ are the risk-neutral distributions of prices in date 1

before and after the announcement. Given the kernel implied by the specialist model we have Fp1(y) = FP(y) 1
R f yE0[

1
y ]

and Fp′1
(y) = FP

p′1
(y) 1

R f yE[ 1
y ]

where subscript P stands for the natural probability distribution. Plugging an intervention

that buys a constant share of the asset market capitalization p′1 = (ga + 1) × p1 to the equation above recovers
g(p1) = ga.
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balance sheet until date 1. Removal of risk only impacts the pricing kernel from date 1 forward.
The second is that deterministic purchases do not change the risk of the asset because it moves
prices uniformly up. Stochastic purchases can impact the pricing kernel between date 0 and date 1
through the effect they have on the risk of the asset between dates 0 and 1. Plugging in the date-1
price of the asset gives the date-0 price as

p0 = µ + σ2 − ln
(

E0

[
exp

(
σ2(b̃ − q)

)])
(OA.6)

It is immediate from this expression that the date 0 price reflects the announcement of pur-
chases made at date 1.

In summary, we have provided a model in the style of Vayanos and Vila (2021) where: (1)
prices may be initially “dislocated” or depressed because of fears of future fire sales rather than
cash flows (though the source of depressed prices is effectively irrelevant), (2) purchases affect
asset prices through their affect on future risk premiums, (3) announcements of purchases af-
fect prices even if purchases happen later, (4) constant purchases of assets require no additional
risk adjustment between announcement and purchases, and (5) state-dependent purchases (state-
dependent q) can alter the pricing of risk between announcement and purchases through their
effect on the risk of the asset. In this last case, one needs to adjust our methodology to account for
changes in the risk of the asset following Proposition 3.

C. Relaxing the Stochastic Discount Factor Invariance
We first review some standard model results and facts about how changes in short-term stochastic
discount factor affect asset prices. We then derive the results of Section 1.3.4 which generalize our
approach to recover the conditional price support.

C.1 The Typical Effect of Changes in Short-Term Stochastic Discount Fac-
tor

We review a couple of standard results on how changes in short-term SDF affect asset prices, in
some simple models, then in terms of unconditional variation in the data.

A simple benchmark. A natural intuition is that because SDFs tend to overweigh bad outcomes,
changes in SDF that affect disproportionately bad outcomes will automatically create price support
functions g that are strongly asymmetric. This intuition turns out to be incorrect. We illustrate why
through an analytical example with standard assumptions.

Assume the true distribution of the price at date 1 is log-normal, log(p1) ∼ N
(
µ, σ2), and

that the risk-free rate is equal to 0. To consider the effect of a pure change in SDF, we assume that
this distribution is unchanged by the policy. We assume that there are two values γ > γ′ such
that the SDF before and after the policy are ap−γ

1 and a′p−γ′
1 . These functional forms correspond

both to what happens in an equilibrium model with CRRA preferences and to the pricing kernel
in the Black-Scholes model. The two constants a and a′ must be such that the expectation of
the pricing kernels are equal to 1, to coincide with a constant risk-free rate: a = E(p−γ

1 )−1 =[
e−γµ+ 1

2 γ2σ2
]−1

= eγµ− 1
2 γ2σ2

.

45



The pricing kernels are asymmetric, with much larger values for lower values of p1, and low-
ering the “risk aversion” γ makes the pricing kernel less asymmetric. However, we show that this
does not result in an asymmetric price support.

Indeed, the risk neutral distribution of p1 without policy is:

f Q(p1) =
1
p1

1√
2πσ2

e−γ(log(p1)−µ)− 1
2 γ2σ2

e−(log(p1)−µ)2/2σ2
(OA.7)

=
1
p1

1√
2πσ2

exp
[
− 1

2σ2

(
log(p1)−

(
µ − γσ2

))2
]

(OA.8)

Under the risk-neutral distribution, the price p1 follows a log-normal distribution with parameters
µ − γσ2 and σ2. A similar result obtains after policy with parameters µ − γ′σ2 and σ2. The two
distributions are log-normal with different means, so a transport from one to the next is simply
multiplying the values by the exponential of difference in means. This gives immediately:

g(p1) = e(γ−γ′)σ2 − 1 (OA.9)

We see that despite the change in discount factor disproportionately affecting the left tail of
the distribution, the price support function is constant. Not surprisingly, in the real world, returns
are not exactly log-normal, and the SDF need not follow this functional form, so we now discuss
the unconditional data.36

Typical empirical variation in asset prices. Empirically, changes in short-term discount rates
only explain a small fraction of the variation in asset prices. For the price level, one can decompose:
log(Pt) = log(Et(Pt+1)) + log(Et(Rt+1). Most variation comes from the first term relative to
the second term, even if we scale the price by a quantity like dividends to make it stationary).
This statement is equivalent to the observation that, at short horizons, prices behave very closely
to random walks. This might seem at odds with the modern view (see, e.g. Campbell and Shiller
(1988)) that “most price variation is driven by discount rates” but it is not. In this latter type of
analysis, it is the cumulative long-term effect of discount rates that drives price variation.

If one is interested in the shape of the distribution, a simple moment to look at is is the risk-
neutral variance, for example backed out from variance swap rates. Variation in this quantity
is driven by changes in the actual variance — often referred to as realized variance — and in the
variance risk premium. Carr and Wu (2009) compute these quantities across multiple securities and
find systematically that the standard deviation of realized variance is close to that of risk-neutral
variance (see their Table 2).

Of course, our specific settings reflect somewhat unusual market conditions, which leads us
to construct additional measures to assess the impact of variation in short-term risk premia. See
Section 1.3.4 for this discussion.

36If we stay within the same family of SDFs, the change in risk neutral probability at a price p1 relative to at a

reference level pre f is: f Q′(p1)
f Q(p1)

/
f Q′(pre f )

f Q(pre f )
=
(

p1
pre f

)γ−γ′
. This still requires large changes in γ to obtain strong changes

in probability. For example to have probabilities drop by a factor of 10 at 80% of the current price level relative to at
the current price level, we need γ′ − γ ≈ 10, a very large change. Therefore, in such models, changes in SDF only
generate asymmetric changes in the distribution if probabilities fall much slower than a normal distribution in the left
tail.
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C.2 Testing a Constant Price Support
We prove Proposition 2. First, notice that if, in equilibrium, the pricing kernel does not change, we
are back to the setting of Proposition 1. We can then correctly recover the price support function.
We show this is the case with a constant support for the family of pricing kernel introduced in
Proposition 2.

To do so, we take a guess-and-verify approach. Denoting g(p1) = ḡ, then p′1(s) = p1(s)(1+
g). If the pricing kernel is unchanged, then the value of the asset at date 0 increases by the same
amount: p′0 = EP[mp1 × (1 + g)] = p0(1 + g). Therefore, in each state, we have:

m′(s) = Θ
(

s,
p′1(s)

p′0

)
(OA.10)

= Θ
(

s,
p1(s)(1 + g)

p0(1 + g)

)
(OA.11)

= Θ
(

s,
p1(s)

p0

)
(OA.12)

= m(s). (OA.13)

This confirms our guess and concludes the proof.

C.3 Adjusting the Estimates for a Response of the Stochastic Discount Fac-
tor

We prove Proposition 3.
The first part of the result is to notice that, as long as we find a distribution for p1(s) which

is unaffected by the announcement, we can use the same idea as in our baseline of matching
the quantiles of p1(s) and p′1(s). In our baseline setting, the risk-neutral distribution of p1(s)
was invariant. This is not the case anymore under Assumption 5 because the pricing kernel is
affected by the intervention. In contrast, the physical distribution remains unchanged, but we
cannot recover it from option contracts. Instead, we focus on an intermediate distribution, only
affected by the exogenous part of the pricing kernel θ(s), the forward-neutral distribution. We
define this distribution in equation (9), which we repeat here:

dFN (p1) = E[θ(s)|p1]dF(p1). (OA.14)

If we can measure this distribution, we can apply the same reasoning as in our baseline method.
Let us show how to measure this distribution using options.

Consider a contract that pays off CK(s) defined by

CK(s) =

{
p1(s)/p0 if p1(s) ≤ K
0 if p1(s) ≤ K.

(OA.15)

We define C′
K(s) similarly after the announcement. The price of this contract coincides with the
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forward-neutral CDF:

E[m(s)CK(s)] = E[E[m(s)CK(s)|p1]] (OA.16)

=
∫ K

−∞
E[θ(s)|p1]

p0

p1

p1

p0
dF(p1) (OA.17)

= FN (K) (OA.18)

Similarly, if we note K′ = K(1 + g(K)), we obtain:

E[m′(s)C′
K′(s)] = E[E[m′(s)C′

K′(s)|p1]] (OA.19)

=
∫ K

−∞
EP[θ(s)|p1]

p′0
p′1(p1)

p′1(p1)

p′0
dFP(p1) (OA.20)

= FN (K) (OA.21)

Replicating the contract CK. Finally, the remaining task is how to replicate the contract CK(s)
using calls and puts. We show it is not much different from the case of the risk-neutral measure.
We can rewrite:

CK(s) =
K
p0

1{p1≤K} −
1
p0

max (K − p1, 0) . (OA.22)

To see this, note that both terms on the right-hand-side are equal to 0 when p1 ≥ K. When p1 < K,
the right-hand side becomes: K/p0 − K/p0 + p1/p0 = p1.

The formula gives us a simple way to replicate the contract: purchase K/p0 of a digital option
with strike K and short 1/p0 of a put with strike K. Recall that the price of the digital is simply the
derivative of the put price with respect to the strike — this is the contract we used to replicate the
risk-neutral measure. So, we have:

FN (K) = E [m(s)CK(s)] (OA.23)

=
K
p0

∂Put
∂K

(K)− 1
p0

Put(K), (OA.24)

where Put(K) is the price of put options as a function of the strike K. Figure OA.1 illustrates the
comparison of this replicating portfolio with that of the risk-neutral measure.

D. The Order-Preserving Condition
We discuss the order-preserving condition of Proposition 1. We show a simple family of economic
problems under which order-preserving interventions are optimal. We demonstrate that focusing
on order-preserving estimates leads to conservative estimates of the asymmetry of a policy. Finally,
we conduct a numerical example to illustrate the effect of using our method in a plausible setting
in which the policy is not order-preserving.
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Figure OA.1: Estimating the risk-neutral and forward-neutral measures.
This figure reports the payoffs for contracts replicating the risk-neutral measure (solid black line) and forward-neutral
measure (dotted red line) for the value K = 80.

A foundation for order-preserving policies. Assume that the policymaker has an objective
function that depends on the post-policy distribution of the price Fp′1

, U (Fp′1
), and the cost of

changing the value in each state is h(p′1 − p1), with h an increasing convex function. This corre-
sponds to a total cost

∫
h(p′1(s)− p1(s))dF(s).

Among all policies reaching a given distribution Fp′1
, the policymaker will always choose one

minimizing this total cost, that is the one minimizing
∫

h(p′1(p1) − p1)dFp1(p1). Irrespective
of the shape of h, the optimal transport is given by equation 5, and is order-preserving (see, for
example, Rachev and Rüschendorf (1998)). More generally, monotonicity is a property that obtains
generically for L2-Wasserstein optimal transport problems; our problem is a special case with one
dimension.

Why the order-preserving transport minimizes asymmetry. Consider a specific cutoff value
K for the price p1. One simple way to measure the asymmetry of the policy is to compute
E[p′1(p1)|p1 > K]− E[p′1(p1)|p1 < K]. This quantity measures how high the with-policy price
in “bad” states of the world is relative to in “good” states of the world. Across all functions p′1(p1)
generating the same distribution Fp′1

, this difference is maximized for the order-preserving trans-
port. Indeed, the order-preserving transport puts all the highest values of p′1 to the right of the
threshold, and the lowest values to the left. Higher values of this criterion reflect a lack of policy
asymmetry, as it maintains bad states as far away from good states as possible.

A numerical example. We consider a variation of the whatever-it-takes example, where the true
price support function has discrete jumps up at a series of cut-offs. Figure OA.2 reports the result of
this exercise. The black line represents our assumption about the true price support function. With
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an assumption about the distribution of the underlying state (we assume a simple log-normal), we
can compute an estimated price support function following our approach. This corresponds to the
red line on the figure. The estimated price support function smoothes out the discrete increments,
but otherwise exhibits a close quantitative behavior.
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Figure OA.2: Price support function estimation with discrete jumps in policy.
The black line represents the actual price support function. We assume the underlying state is log-normal with mean
level 100 and volatility of 7.5% and follow our method to estimate the price support function. The red line reports the
estimate price support function.

E. The Effect of Anticipation
Our baseline interpretation of the results relies on a strong form of event-study assumption: just
before the announcement, investors never thought about this policy, and right after they are sure of
its implementation. This is what is colloquially referred to as an “MIT shock.” Here we discuss
how to evaluate whether our results are sensitive to the assumption by generalizing to a case where
the policy is somewhat expected.

Adjusting for anticipated and uncertain policy. Let the probability of intervention be θ− ≤ 0
before the announcement, and θ+ after the announcement, with θ− ≤ θ+ ≤ 1. Naturally, we
assume that the announcement increases the probability of intervention. Denote Fp1 the distribution
of the date-1 price if no policy happens, and Fp′1

the distribution of that price if the policy happens
for sure. In this appendix, we drop the superscript Q for simplicity. Those two are the relevant
counterfactuals that we need to recover the price support function g.
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Then we have:

F− =
(
1 − θ−

)
Fp1 + θ−Fp′1

(OA.25)

F+ =
(
1 − θ+

)
Fp1 + θ+Fp′1

. (OA.26)

Rearranging these equations allow to inverse the two distributions:

Fp1 =
θ+F− − θ−F+

θ+ − θ−
(OA.27)

Fp′1
=

1
θ+ − θ−

[
(1 − θ−)F+ − (1 − θ+)F−] . (OA.28)

The data allow us to measure F− and F+ which are both compounded lotteries of the risk-
neutral distribution with policy, Fp′1

, and without, Fp1 . If we know the probabilities θ− and θ+, we
can recover Fp1 and Fp′1

. We can then find the price support function g that transforms Fp1 into Fp′1
.

Special cases. In the case of an unanticipated and certain announcement θ− = 0 and θ+ = 1,
we get back to our baseline approach:

Fp1 = F−

Fp′1
= F+.

If the announcement is anticipated but not uncertain, then θ− = θant, and θ+ = 1, which
gives:

Fp1 =
F− − θantF+

1 − θant

Fp′1
= F+.

Application to the 2020 corporate bond purchases. Figure OA.3 reports the price support
function implied by a few alternative combinations of θ− and θ+ for our main empirical example
(the March 23 announcement). The results are as one would expect. Anticipation makes the effect
of the policy larger. Residual uncertainty about the implementation has a similar effect. However,
both features do not strongly change the estimated asymmetry in price support across states.

F. Data
We use a variety of financial instruments that have traded option contracts referenced to them and
were the direct target of policy announcements.These include options on the iShares investment
grade corporate bond ETF (LQD), the iShares high yield corporate bond ETF (HYG), the future on
the S&P500 index, the future on the ten-year Treasury bond, the financial sector ETF (XLF), the
future on the Nikkei index, the future on the European stock index (STOXX), and the CDX invest-
ment grade credit basket spread. We aim to use options of maturities close to three months which
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Figure OA.3: Effects of anticipation on price support. This figure shows the price support
function under alternative assumptions about the probability of policy intervention before (θ−)
and after the announcement (θ+).

are frequently the most liquid. Data from exchange traded instruments come from OptionMetrics.
Data on CDX and their options come form Bloomberg and Markit.37

G. Details of Corporate Bond Purchase analysis

G.1 Event Study for Corporate Bond Purchases
The announcement of the SMCCF and PMCCF had a significant and immediate impact on corpo-
rate bond prices. Table OA.1 shows the return response for the iShares investment grade corporate
bond ETF (LQD) using a window of one to three days around the announcement. This large ETF
captures the broad universe of investment-grade corporate bonds and is effectively a leading in-
vestment grade bond price index. The ETF summarizes the announcement effect on corporate
bond prices without having to obtain transaction level data of individual bonds which trade less
frequently. The cumulative three-day announcement window return is 14%, and the abnormal ex-
cess return is 10% (with controls for high-yield bonds and the stock market). The 14% return
translates into around a $1 trillion increase in market value for investment grade corporate bonds.
Using a one-day window for the announcement drops the raw return and abnormal excess return
to about 7%. A shorter one-day window provides better identification at the cost that it may take

37Ideally, one would like to use longer maturity options as well to study whether implicit promises are longer-term
in nature. However, in practice, liquidity in the vast majority of these markets is heavily concentrated around or below
three months.

52



Table OA.1: Bond Price Response to the March 23 Announcementt

This table shows the return on an investment-grade corporate bond ETF (LQD) on the announcement on March 23
2020 by the Fed to purchase corporate bonds. The first two columns use a three day announcement window and the
coefficient represents the cumulative daily return on the announcement. The second column uses the excess return
over TLT, a long term Treasury ETF, and controls for excess returns on high yield bonds and the stock market so that
the announcement effect is the cumulative abnormal return. The last two columns repeat this same exercise over a
one-day window.

(1) (2) (3) (4)
Three days Three days One day One day

Announcet 14.17*** 10.27** 7.37*** 6.63***
(3.78) (1.25) (0.01) (0.07)

rHighYield
t 0.54*** 0.55***

(0.04) (0.04)
rSP500

t 0.03 0.03
(0.02) (0.02)

N 2,988 2,988 2,988 2,988
R2 0.11 0.87 0.09 0.87

the market time to process the announcement.38 Haddad et al. (2021) show in higher frequency
intraday data that prices increased right at the time of the announcement, and that other news was
unlikely a factor given other assets such as high yield corporate bonds, stocks, or Treasury bonds
showed little movement.

G.2 How much did promises contribute to the overall price movement?
Figure OA.4 plots the implied price support function in our main exercise along with a dashed line
for flat price support below the median price absent policy. We compute the expectations of each
of these two price support functions to assess how much the extra support in the left tail increased
the price at the time of announcement.

G.3 Computing the contribution of the left tail support to the announce-
ment response

We show how to construct the estimates of contribution of support in the left tail to the announce-
ment return that we report in Table 1.

We start by recovering the risk-neutral CDF FQ, the forward-neutral CDF FN (as described in
Appendix C.3), and the respective price support functions g and gN .

Baseline case. Consider first the case where the SDF is assumed to be invariant, as also
computed in Section 2.3. I this case, we have:

38For this event, it is particularly desirable to have a narrow window given that volatility was very high and, in
addition, the fact that the CARES acts was signed into law four days after the announcement.
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Figure OA.4: Counterfactual Price Support Function Without Downside Support.
This figure shows the implied price support (expressed in percent) as a function of the pre-policy price. The pre-policy
price is normalized to 100 before announcement. The dashed line indicates a flat price support function below the
median price absent policy.

p0 =
∫

p1(s)dFQ(s), (OA.29)

p′0 =
∫

p1(s)(1 + g(s))dFQ(s), (OA.30)

(OA.31)

where p0 and p′0 are the date-0 prices of the asset before and after the policy is announced. The
after-announcement price if a counterfactual policy g̃(s) was announced follows immediately:

p̃0 =
∫

p1(s)(1 + g̃(s))dFQ(s) (OA.32)

We compute this price for a price support function truncated at is median as in Figure OA.4. Table 1
reports

1 − p̃0 − p0

p′0 − p0
, (OA.33)

where the fraction is the share of the price response we would have observed without the abnormal
price support in the left of the price at announcement p0, i.e. with g̃(p) = g(p) when p > pmed
and g̃(p) = g(pmed) when p ≤ pmed.
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Endogenous SDF case. We now have that the SDF m and forward measure dFN are given by

m(s) = θ(s) p0
p1(s)

(OA.34)

dFN (s) = θ(s)dF(s), (OA.35)

where dF is the natural probability measure. It then follows that

dFN (s) =
p1(s)

p0
dFQ(s), (OA.36)

or equivalently dFQ(s) = p0
p1(s)

dFN (s). Thus

1 =
∫

dFQ(s) (OA.37)

1 =
∫ p0

p1(s)
θ(s)dF(s) (OA.38)

1
p0

=
∫ 1

p1(s)
θ(s)dF(s) (OA.39)

1
p0

=
∫ 1

p1(s)
dFN (s). (OA.40)

Analogously we obtain the post-announcement and counterfactual policy prices:

1
p′0

=
∫ 1

p1(s)(1+g(s))dFN (s), (OA.41)

1
p̃N0

=
∫ 1

p1(s)(1+g̃(s))dFN (s). (OA.42)

We can then simply calculate the contribution of left tail support:

1 − p̃N0 − p0

p′0 − p0
. (OA.43)

As before, the numerator is the price change without abnormal price support at the tail. So
when we subtract this from 1, we obtain the component of the price movement that is exclusively
due to abnormal support at the tail of the distribution. Further note that p′0 and p0 are date-0
observables so they are identical under both measures.

G.4 The Size of the Investment Grade Corporate Bond Market
In our calculations, we use $7 trillion as the size of the investment graded corporate bond mar-
ket. The $7 trillion number for the supply of investment-grade bonds is supported by multiple
sources. First, SIFMA reports total US corporate bonds outstanding as of 2019 at $8.8 trillion
(https://www.sifma.org/resources/research/us-corporate-bonds-statistics/). However, this number
includes both investment-grade and high-yield bonds but does not separate between the two. In
order to split between the two, we follow one of two approaches, both of which yield about the
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same number of a 6-to-1 ratio of investment-grade to high-yield. These numbers are also reported
in O’Hara and Zhou (2021), who study the effects of the COVID-19 movements in corporate bond
markets. They state: “The US corporate bond market totals almost $8.8 trillion, with investment-
grade bonds approximately six times larger than high-yield bonds.” Before discussing this split
between investment-grade and high-yield, note that this ratio implies the total size of investment-
grade as $8.8 × 6/7= $7.5 trillion.

To split between investment-grade and high-yield, we take the market capitalization of the
Bloomberg US corporate bond indices for investment-grade and high-yield respectively (Bloomberg
ticker ”LUACTRUU INDEX”). These indices put the market capitalization of investment grade
at $6 trillion and high-yield at $1.2 trillion as of February of 2020. One might want to use the
Bloomberg US investment-grade market capitalization directly, which would put the number at $6
trillion, but this is likely slightly low given not all bonds are included in the index.

These numbers roughly agree with numbers in the Z1 release that are also on FRED, though
they do not map exactly to the variables provided there. The closest series to an overall corporate
bond supply is CBLBSNNCB (https://fred.stlouisfed.org/series/CBLBSNNCB), “Non-financial
Corporate Business; Corporate Bonds; Liability, Level.” For 2020 Q1, it reports $6.014 trillion
which is close to the number we provide. This series has two key differences with our goal: it
omits financials, which understates the total a bit, but includes both investment-grade and high-
yield, which overstates it. The series ASCFBL (https://fred.stlouisfed.org/series/ASCFBL), which
is “All Sectors; Corporate and Foreign Bonds; Liability, Level” reports $13.339 trillion for the
same time period. However, it is conceptually further away from what we are trying to measure
for a few different reason. One is foreign bonds, the other is “all sectors” (see the Flow of Funds
table at https://fred.stlouisfed.org/release/tables?rid=52&eid=809162&od=2020-01-01#). Foreign
bonds are playing a big role here, as the “Rest of the World” category accounts for $3.008 trillion.
Our understanding is that these are foreign bonds held by US investors, which we do not include in
the total supply numbers. Removing foreign bonds would take the total down to about $10 trillion.
Then, we have to split off high yield which, using the ratio from earlier, would put us around $8.5
trillion for investment-grade which is within the ballpark of our reported number. This number
may still be slightly high because it includes other types of securities such as convertible bonds.

Bretscher et al. (2022) take yet another approach and argue for a market size of $6.5 trillion in
2019: “To construct the U.S. corporate bond universe, we follow an approach similar to Asquith
et al. (2013) and identify corporate bonds in FISD that are denominated in U.S. dollars, are issued
by firms domiciled in the U.S., and are publicly traded. We exclude convertible bonds and bonds
that had no outstanding amount in a given quarter. This definition of the U.S. corporate bond
universe, which we refer to as the publicly traded bond universe, yields a total outstanding of 6.5
trillion U.S. dollars in 2019 (by par value).”

Thus, the range of numbers for the total investment-grade corporate bond supply around early
2020 is about $6.5-8.5 trillion across a variety of sources, and our preferred estimate is within this
range at $7 trillion. Note that implied purchases would not change dramatically using these other
figures. Moving through this range of estimates leads to a factor between 0.93 and 1.2 in terms of
implied purchases.
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G.5 Longer Event Window
We demonstrate robustness to using a longer window in our event study. Our main results use
one day which tightens identification. However, it could also be reasonable to allow more time
for markets to react at the cost of less tight identification since a longer period means that other
shocks could be affecting markets. Figure OA.5 shows that the results are similar if we expand the
event window to three days. While magnitudes are slightly larger compared to the results in the
one-day window, the asymmetric effect remains pronounced. Our main analysis attributes 50%
of the announcement effect to additional promises in the left tail. Using a three-day window this
number falls to about 30% because the right tail remains elevated. However, the dollar value from
additional left tail promises increases from about $250 billion using the one-day window to about
$300 billion when we expand to the three-day window. This comes from the overall return on
corporate bonds being larger over three days compared to one day. This shows that the choice of
event-window length does not have a substantial effect on these results.
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Figure OA.5: Price Support Function for the March 23 Announcement: 3-Day Window.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price,
normalized to 100 before announcement.

G.6 Comparison to High Yield Bonds
Figure OA.6 contrasts the effects on investment grade bonds with those for high yield, using op-
tions on the largest and most liquid high yield bond ETF (HYG). Noticing the vastly different
y-axes, the overall returns for high yield are basically flat. This result suggests that the announce-
ment did not coincide with other macroeconomic news affecting corporate bond markets, since the
effects are strongly concentrated in investment-grade bonds which were the target of the purchases.
Second, and more importantly, they speak against the possibility that changes in the pricing kernel
are driving our results as a lowering of the price of credit risk should show up disproportionately
in high-yield bonds, which is not the case.

Figure OA.7 plots the price support from the April 9, 2020 announcement that expanded the
facilities to include high-yield bonds. We follow the same methodology applied to options on
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Figure OA.6: Comparison of Imvestment Grade and High Yield for March 23.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price,
normalized to 100 before announcement.

the high-yield ETF (HYG). Not surprisingly, for this announcement, the asymmetric pattern is
concentrated in high-yield bonds.
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Figure OA.7: High-Yield Announcement on April 9, 2020: Price Support Functions.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price,
normalized to 100 before announcement.

G.7 Liquidity
It is well known that liquidity in option markets—and derivatives markets more broadly—is heavily
skewed. Trading volumes in the instruments we consider are not extremely high. For example, the
options on the investment grade corporate bond fund we investigate in section 2.3 have an overall
trading volume in 2020 (in terms of contract notionals) around $100 billion. Bid-ask spreads are
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about 3% but grow considerably for low strike prices, reaching values as high as 30%. Thus, it
is natural to investigate the robustness of the patterns we document to liquidity costs. In Section
2.3 we show that the negatively slopped support function we recover is very unlikely to have
happened by chance. It therefore cannot be driven the overall level of liquidity in this market,
since if this pattern was liquidity-driven we should expect it to show up recurrently in the data.
Still, one could be concerned that liquidity disappeared exactly around the announcement since
those were unprecedented times. To evaluate this possibility we replicate our recovery procedure
but using bid and ask quotes. Such quotes are firm offers to buy and sell and therefore less subject
to liquidity concerns. In Figure OA.8 below we report the recovered price support function with all
four possible combinations. Of particular interest is the line that depicts the price support function
implied by the bid-ask pair since it reflects the prices at which investors could have bought (in
small quantities) options before the announcement and sold after the announcement. Thus, the
implied price support function corresponds to actual returns for an investor even if we account for
the illiquidity implied by a wide bid-ask spread. While accounting for these price differences has a
visible impact on the price support function, the broad magnitude and shape are mostly unaltered.
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Figure OA.8: Price Support Function Using Bid and Ask Quotes.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price,
normalized to 100 before announcement. Here we construct the price support function using both the bid (quote at
which investors were willing to buy the options), the ask (quote at which investors were willing to sell), and the mid
(the mid point between these quotes which we use in our baseline analysis)
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H. Confidence Intervals

H.1 Bootstrap procedure
To produce the confidence intervals shown in Figure 4, we estimate a price support function for
any pair of consecutive trading days, like we do for the policy announcement. That is, we compute
the risk-neutral CDF on each of the trading days, and find the price support function connecting
them. We then assess at each point on the x-axis of this price support function if the value on the
y-axis for the policy date is outside of the typical range of values for other days (i.e. a 95% confi-
dence interval). Our baseline follows the standard treatment of heteroskedasticity when volatility
is measured: rescale the data to make it comparable across dates. Our procedure is:

1. Start with daily data from January 2010 to February 2020 (just before the COVID-19 shock).
This sample contains roughly 2500 trading days.

2. Construct the price support function for each sequential pair of dates (t and t + 1) in the
sample. The price support function is expressed in return space, that is, g maps a realized
return from date t to the option maturity, which is the strike price, (xt =

strikepricet
f orwardpricet

− 1)

into a return of the asset in that state from date t to date t + 1 (gt(x) =
F−1

t+1(Ft(strikepricet))

strikepricet
−

1).

3. Adjust for heteroskedasticity. Because the range of both of these axis naturally stretches out
with volatility, we normalize both by the at-the-money implied volatility in date t. Specif-
ically we compute xz,t = xt

σatm
t

and gz,t(xz,t) = gt(xz,t)
σatm

t
. This puts all days in the same

standard-deviation scale. A nice finance intuition to think about this procedure is that we are
leveraging up each observation to have the same implied volatility as our event date. Thus
it creates a counterfactual sample where the options and the underlying have similar risk
characteristics as during our event.

4. Sample with replacement out of these days to construct a sample of 100k days. We could
alternatively just use the sample; because we are using ten years of data, results are virtu-
ally indistinguishable in this case, but bootstrapping producer smoother confidence intervals
when taking a more non-parametric approach. We call this new sample the bootstrapped
sample.

5. Discretize the x-axis of the price support function. We want to compute standard errors at
various points of the function, so we have to discretize the x-axis. We create 100 bins of the
variable xz where the bins are chosen to be consistent with the unconditional distribution of
xz in the bootstrapped sample. We then take the average of gz within each date-bin pair.

6. Compute the range from the 2.5th percentile to the 97.5th percentile of the value of these
price support functions for each bin. This is the confidence interval for the normalized price
support function.

7. Compare the normalized price support function for the policy announcement to these nor-
malized confidence intervals. To provide a more intuitive representation, we rescale the axis
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of this comparison by the at-the-money volatility on the day of the event — this way, the
point estimate of the price support function is the unnormalized one. We also follow the
usual tradition of plotting the confidence interval around the estimates instead of around 0.
The strict interpretation is that if this interval does not contain 0, our estimate is statistically
different from 0.

H.2 A different statistical hypothesis: Is the asymmetric shape of g unusual
conditional on a large realized return?

Our baseline statistical test focuses on measuring “how unusual the change in the price support
function is”, without the conditioning aspect. This test helps evaluating the causal statement: can
we attribute the changes we see in the CDFs to the announcement of the policy? Indeed, we select
the date we study based on the occurrence of the policy announcement, not the large change in
bond price. The observation that the change in bond price is unusually large suggests that the
announcement caused the return. The observation that the price support functino is unusually large
suggests also suggest that the announcement caused this change.

In this section, we add the clause “conditional on the large change in the bond price” to the
test. What is the goal of this approach? In a standard event study, once the econometrician has
overcome the burden of identification that the shock actually caused the market response, then it
becomes irrelevant whether the pattern of responses across assets or across the different strikes
is the same as usual or not. That said, a plausible concern is whether there is a deep mechanical
or structural force other than the policy that ties down various parts of the distribution. So it is
independently useful to test whether large shocks are always accompanied by as much action in
the left tail as we found. As we explain below, we find the answer to be no, which comforts us in
our interpretation.

We ask whether when the return on a given day is an outlier, an asymmetric g obtains sys-
tematically. We repeat our baseline procedure, but look at outcomes only in the sample of return
outliers. Specifically, starting from the whole sample, we only keep dates for which the normalized
return (rz,t =

1
σatm

t

(
f orwardpricet+1

f orwardpricet
− 1
)
) is either below the 1st or above the 99th percentile. To

make the negative returns comparable to our sample, we flip the sign of g for these, that is we
replace the observations by g̃z,t = sign(rz,t)× gz,t. Then, in the same way as our baseline, we
compare the range of outcomes for the normalized price support in the bootstrapped sample to the
normalized price support on the event day.

Figure OA.9 reports the results. We now plot the 95% confidence bands in their initial position.
These bands are not centered around 0: by construction we select large value of returns, so the
average value of g is also large. The average level of g obtained by selecting these outliers (the
dotted red line) is very close to the realized return for our event (the horizontal black line). This
indicates that we are looking at broadly the same intensity of outliers. The blue band reveals that
a strongly negative slope of the price support function is not a feature of the simulated data. Said
otherwise, we reject the hypothesis that the negative slope of g we see for the announcement is
explained by the fact that there was a large return.

One limitation of this approach is that it focuses on outliers relative to implied volatility. It
could be that large returns irrespective of the volatility on that day trigger a different behavior of
the price support function. Assessing such a behavior is challenging in the daily data because the
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Figure OA.9: Standard Errors: Only Sampling Large Returns. The figure shows out baseline
result with 95% confidence bands that now adjusts the baseline procedure to sample only from
extreme (both positive and negative) 1% (implied-volatility) normalized return days. See text
above for detailed description.

magnitude of the event day return is so large. To get at larger magnitudes of returns, we extend the
time window to construct the “usual” behavior.39

Looking at longer windows allows us to get closer to matching the returns of our event without
relying on leverage. However, it does not give us a way to directly construct a counterfactual for
our price support function as we did in the analysis before. The basic issue is that the support of
g for each day is (partially) determined by the range of traded strikes that day, which is influenced
by the amount of expected volatility until the option maturity. So while we see more volatility in
realized returns at longer horizon, the range of g on the x-axis does not increase.

One way around this challenge is to look at the relationship between the slope of the price
support function and the realized returns on the underlying. In this way we can see whether the
asymmetry we detect is unusual given the high absolute return. Our procedure is as follows: we
expand the window up to 60 days. We then compare the risk neutral density in date t with the
risk-neutral density in date t + h where h ∈ 1, 5, 10, 21, 30, 45, 60 to recover the function gt,h. We
then compute for each date-horizon pair the slope of g. Specifically we calculate

Slopet,h =
gt,h(xt)|F(xt)=F − gt,h(xt)|F(xt)=0.5

xt|F(xt)=F − xt|F(xt)=0.5
, (OA.44)

where F is the percentile of the most extreme point in our event day support function ( F =11%).
So, we are computing the slope of g using two specific percentiles (11% and 50%) across all dates.

39We thank one of the anonymous referees for suggesting this approach.
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We choose the left tail on our event date and the median to compute this slope, but other percentiles
in the left tail or the right tail produce similar results.

Figure OA.10 reports a scatter plot of all slope and realized return pairs, i.e. all date-horizon
observations. Our event is the blue star in the bottom right corner with a slope close to -1 associated
with a return of about 7%. The different colors show the different horizons. The range of return
realizations grows as the horizon increases, getting progressively closer to the 7% return.

Two key observations come out of this picture. First, while there is on average a negative
relation between slope of g and realized return, the value of the slope for the policy event is
not explained by that relation. The colored lines estimate this relation for each horizon.A linear
regression predicts an observation with a 7% return has a slope of g around -0.2 associated with
it, with this prediction fairly stable across horizons h. This value is far from the value of -1 for the
event. Observing the realized values of the plot this difference is clearly statistically significant.
Going back in terms of g, the usual relation would predict a wedge of −0.2 × (xt|F(xt)=F −
xt|F(xt)=0.5) ≈ 8% between values of g the median and the tail of the return distribution. The
estimated g for the event instead has a wedge of about 40%, almost 5 times higher.

The second key observation is that there is quite a wide range of variation in the relation
between the slope of g and realized returns. This feature strongly alleviates the concern that there
could be a “mechanical” relationship that strongly ties these two objects overall.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Realized Return (%)

−0.5

0.0

0.5

1.0

S
lo

p
e

of
g

60

45

30

21

10

5

1

Figure OA.10: Relation Between Realized Return and Slope of the Price Support Function.
Each dot represents a date-horizon pair. Different colors are different horizons ranging from 1 up
to 60 trading days. The different lines are ordinary least-square predictions for each horizon. The
March 23 event is shown with a star marker in the bottom right of the plot. See text for details.

In short, all of our estimates conditioning on large realized returns point to the same conclu-
sion. While large returns are somewhat associated with asymmetry in the price support function
g, this asymmetry is small when compared to what we measure for the policy announcement. The
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amount of asymmetry for the event day is high even when compared to the most extreme days in
the sample.

I. State-dependent Multiplier Calculations
We discuss additional results on multipliers that are state-dependent. Greenwood and Vayanos
(2014) interact Treasury supply with a measure of arbitrageur wealth (the amount of arbitrage
capital in their model determines the price impact of changes in supply, since excess supply must
be absorbed by these agents). They find that a 1 standard deviation change in arbitrageur wealth
leads to a 25% increase in their coefficient of bond supply on bond yields and returns. This means a
more extreme 2 standard deviation shock to arbitrageur wealth would only change the multipliers
by 50%. They proxy for arbitrageur wealth using realized bond returns, so we can easily map
their results to our setting. Specifically, they state: “According to Hypothesis 4, the interaction
terms should have a negative coefficient: supply and slope predict returns positively, and more
so when arbitrageur wealth decreases. The results confirm this prediction in the case of one-
year returns. The coefficients of the interaction terms are economically significant. Consider, for
example, the interaction term between supply and our first measure of arbitrageur wealth, (22).
This term has a coefficient of –4.436 for one-year returns. From Table 1, the standard deviation
of the wealth measure is 0.0015. Therefore, a one-standard-deviation movement in the wealth
measure changes the coefficient of maturity-weighted debt to GDP by 4.436 × 0.0015 = 0.0067.
This is approximately a one-quarter percentage change, since the coefficient is 0.026 (Tables 2 and
7).” These results suggest that the multiplier does change across states, but again this variation is
too small to explain our findings.

To address this directly, we calibrate the Greenwood and Vayanos (2014) results to our setting
based on the standard deviation of returns on investment-grade bonds implied by option prices.
Specifically, we define M(p) = M×

(
1 − 1

4 R(p)/σ
)

. That is, we take our baseline constant

value of M and multiply by
(

1 − 1
4 R(p)/σ

)
where R(p) is the (net) return on corporate bonds in

a given state p and σ is the standard deviation of returns using option implied volatility. This gives
us quantitative variation in multipliers consistent with what Greenwood and Vayanos (2014) find
empirically.40 We then plot the associated quantities Q(p) that we back out from using g(p) =
M(p)× Q(p). Figure OA.11 below plots the quantities when we use a multiplier that depends
on the realized state.

As shown in the figure, this adjustment still produces a highly asymmetric price support func-
tion. One could also ask the question in reverse: what value of the multiplier would we need in
each state to make the price support function flat? Since our price support is 20 times higher in
the worst states relative to the best states, we would need a multiplier that is 20 times larger in
these extreme bad states to match the asymmetry in the data. The evidence above suggests much
milder variation, that the multiplier in bad states would be up to 2 times larger which is an order of
magnitude from the variation needed to produce a flat price support function.

The QE literature comes to a relatively similar conclusion on this issue. For example, Bernanke
(2020) states: “The evidence described so far suggests that, once we control for the fact that mar-

40E.g., a zero return, or no change in prices, gives the baseline multiplier, while a return of −σ gives a multiplier
that is 25% larger than the baseline. Positive returns result in a lower multiplier relative to the baseline.
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A. Conditional Quantities B. Multiplier
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Figure OA.11: Price Support Function with a State-Dependent Multiplier
We model a state-dependent multiplier M(p) = 3.5(1 − 0.25 × R(p)/σ). The right panel plots M(p). Panel A
shows conditional quantities q(p) = g(p)/M(p) compared to our baseline of a constant multiplier. Quantities are
expressed in percentage of the total supply of investment grade corporate bonds. Panel B reports the multiplier.

ket participants substantially anticipated later rounds of QE, the impact of asset purchases did not
significantly diminish over time, as financial conditions calmed, or as the stock of assets held by
the central bank grew.” With regard to the ECB announced purchases in 2015, Bernanke (2020)
states: “This reduction is economically significant and, when adjusted for the size of the program,
comparable to estimates from event studies of early QE programs in the United States and the
United Kingdom, even though in early 2015 European financial markets were functioning nor-
mally.” Thus, the available evidence suggest that the impact of purchases per dollar are reasonably
similar in calm or stressed financial market conditions.

The evidence from Busetto et al. (2022) that we discuss in Section 4 complements Bernanke’s
decision. Figure 9 reports the relation between surprise quantity purchased and the response of
10-year gilts across different QE announcements. Of course, the point of our paper is that these
announcements might contain messaging about state-contingent intervention rather than a single
number. But still, while the relation between price and quantity does not appear perfectly linear
when excluding the QE1 announcement, it is not too far. The R-squared from the fitted linear
relationship is high at about 0.8. Clearly, whatever nonlinearity is present here is nowhere near
enough to explain the state-contingent variation we find using options.

J. In Which States was the Fed Expected to Buy? Details on
the Copula method

We discuss in more detail how we pinpoint what exactly drove the price response. We start by
using options on the ten year Treasury futures (formally, the security name is Ultra 10-year T-Note
futures) and options on the CDX North America investment grade index. This CDX index tracks
the CDS spreads of 125 of the most liquid investment grade corporates. These options allow to
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recover the risk-neutral density for the distributions of credit spreads and interest rates. The options
on the corporate bond ETF give the risk-neutral density on the cash instrument. To separately
recover the movements in the distribution of the synthetic component of moments in the price of
corporate bonds (interest rate plus credit spreads) from the movements in the distribution of the
basis we need to recover how the joint distribution of these three prices (and how this distribution
changed). The options only give us the marginal distribution of each one. To recover the joint
distribution we rely on a copula model.

It works as follows. We have three variables x, y, z each with known marginal distribution
Fx, Fy, Fz. We also know the correlations between these variables which are assumed to be constant.
Let this correlation matrix be given by C. We then sample x̃i, ỹi, z̃i ∼ N (0, C), the multivariate
normal distribution with zero mean and covariance matrix C — and therefore unitary individual
standard deviations. We label each draw using the index i. We then compute, for each realization,
the corresponding quantile in the standard normal distribution. For example f xi = F(x̃i) where
F is the cdf of a standard normal distribution. We then have { f xi, f yi, f zi}N

i=1 where N is the
number of draws. Finally, we use the original marginal densities to invert back the realization,
i.e., {xi, yi, zi} = {F−1

x ( f xi), F−1
z ( f zi), F−1

z ( f zi)}. This procedure lets us to simulate from the
joint distribution in a way that is consistent with the marginal distributions recovered form options
prices. Therefore, it allows us to also recover the distribution of any function of these variables.

More specifically, we apply the method in two steps because it is more intuitive to think about
the correlation between the synthetic and the cash instrument then to think about the correlation of
the cash instrument and the different pieces of the synthetic. We first apply the copula method to
the CDX and treasury options. We use a correlation of -0.25 which is consistent with the historical
data. The results are quantitatively similar if we change the correlations to -0.75 or 0.25 (see
Figure OA.12 Panel A). We set the correlation between the synthetic and the cash instrument to
0.8 which is consistent with the historical average. This correlation tends to go down during crisis
(for example a 30-day moving average estimator has the lowest realization of 0.25 in our 9-year
sample) so we show results with 0.4 and 0 as well (see see Figure OA.12 Panel B). The key result
is unchanged.

Why is the result so robust to correlation assumptions? The marginal CDFs are informative
about the range of each variable and only for very extreme correlations would the range of the
synthetic distribution be sufficiently large to be able to account for the wide range of the cash
instrument distribution.

K. Implications of Promises for Market Dynamics

K.1 Are the Effects of Asset Purchases Getting Weaker: Empirical Details
This subsection provides more detail on the data sources used in Section 4.

K.1.1 United Kingdom

Table OA.2 contains the response of 10 year Gilt yields to six announcements of purchases be-
tween February 2009 and February 2010. The Bank of England is unique in that most of these
announcements contain a fairly narrow and specific quantity range. First, note that only the first
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A. Varying the correlation between B. Varying the correlation between
interest rates and credit spreads synthetic and cash bond

0.7 0.8 0.9 1.0 1.1 1.2

LQD

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

basis (correlation 0.25)

basis (correlation -0.25)

basis (correlation -0.75)

0.7 0.8 0.9 1.0 1.1 1.2

LQD

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

basis (correlation 0.8)

basis (correlation 0.4)

basis (correlation 0)

Figure OA.12: Decomposition of Announcement Effects: Robustness
In this figure we look at how the decomposition in Figure 6 depend on the correlation between interest rate, credit risk
and financial dislocations. The Figures shows in the x-axis the value of the asset in different states of the world absent
policy. The y-axis shows the effect due to movements in the basis. The different lines show different correlations.

Table OA.2: UK Announcement Effects

This table shows data for UK. The yield numbers are for the 10 year Gilt. Sources: Joyce and Tong (2012), Meaning
and Zhu (2011), and author’s calculations. Quantities are given in billions (£). The column “multiplier” indicates the
percentage change in market value of the securities divided by the percentage of market capitalization purchased.

Date Gilt Yield Announcement Quantity Low Quantity High Multiplier Range
2/10/09 -34 QE ”likely”

3/4/09 -68 75 billion 75 75 0.60
5/6/09 10 50-125 billion 50 125 [-0.13, -0.05]
8/5/09 -3 50-125 billion 50 125 [0.02, 0.04]

11/4/09 10 25 billion 25 25 -0.27
2/3/10 -2 Maintain 200 0 0

Total -87 200 350 [0.17, 0.29]

two announcements had any effect at all on yields, together resulting in about a 100bps decline
in the 10 year Gilt yield. The first announcement, on February 10, 2009, did not contain concrete
information but suggested that purchases were likely. On March 4, purchases of £75 billion lead to
a decline of 70bps in the 10 year Gilt yield. In contrast, the next three announcements featured no
changes in yields at all despite similar magnitudes of purchases. We can convert the yield changes
and quantities into a price elasticity that gives the price impact, which we provide in the column
“multiplier.” The multiplier for the first announcement of 0.6 says that by purchasing 10% of the
supply of Gilts the price of Gilts would fall by 6% (for a security with a duration of 10, this means
a decline in yields of 60bps). When the announcement comes with a quantity range, we provide
the range for the multiplier as well. The main finding is that the multiplier is much higher in the
early announcement and is then quickly goes to zero.

These patterns fit well with the promises view of state-contingent policy. A natural interpre-
tation is that upon hearing the early announcements, investors form expectations that the Bank of
England would buy more Gilts if the economy remained weak. Thus the ”promises” view explains
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both the high initial multipliers and the zero in the follow on interventions. The Bank of England
implemented a second period of purchase announcements in October 2011, but Meaning and Zhu
(2011) find these to have a negligible effect on yields. Unlike for other countries, we don’t have
reliable option data for Gilts over this period to test whether the early announcements effects were
driven by the promises component.

An alternative explanation for the declining multiplier effect above is that the multiplier de-
pends on economic conditions, and the initial announcements occurred in periods when the econ-
omy was in worse shape (after all that is when they decided to pursue this policy for the first time).
We will return to this argument in each of the subsections. For the UK data, we note that the mul-
tiplier goes from 0.6 in March, 2009 to -0.1 in May, 2009. Thus economic conditions would have
to change quite rapidly for the multiplier to go from high and positive to zero in only two months.

K.1.2 United States

Table OA.3 provides announcement effects for Quantitative Easing (QE) in the US, specifically
QE1 which was implemented November, 2008 to November, 2009. Announcements of later QE
programs, QE2 and QE3, have been shown to have had essentially no effect on yields. The Fed
purchased Treasuries, Agency debt, and Mortgage-backed-securities, and we use numbers from
Gagnon et al. (2018) on the yield responses. The last column “multiplier” converts average yield
changes to price movements and then divides by the total amount of assets purchased as a fraction
of the supply of these securities outstanding.41 The initial announcement, which stated the Fed
would purchase “up to” $600 billion across these categories, led to an average decline in yields
of about 40 bps. This equates to a multiplier of about 0.8 (e.g., for a purchase sized at 1% of
market cap, prices would increase by 0.8%). The next significant announcement in QE1 came in
March 2009, where the Fed expanded quantities. While yields moved by about the same amount,
the quantities were larger. This leads to a lower multiplier. Later announcements, for example
dropping the “up to” language and effectively confirming the Fed would purchase the maximum
stated amount, had no effect on yields. These patterns also fit the support function results we
present in Section 3 for the initial announcements, which indicate the presence of implied policy
puts in these initial announcements.

These results contrast to QE2 and QE3, where no announcement effects are found (see Mean-
ing and Zhu (2011)). A potential concern with comparing these impacts across time periods is
that perhaps the multiplier is much higher in times of more severe economic stress and economic
uncertainty such as the period where QE1 was unleashed. The price response to the interventions
in the treasury market at the outset of the covid shock are particularly informative to distinguish
the ”promises” view from the economic uncertainty view as explanations for the time-variation in
multiplier.

These announcements are studied extensively in Vissing-Jorgensen (2021), who find that the
announcements had no effect on Treasury yields using high frequency data from Treasury futures
markets. The first announcement on March 15 stated purchases of “at least” $500 billion of Trea-
suries and $700 billion in total long duration assets. This is sizable not only on its own but also
because the “at least” language indicated potentially much larger purchases. This was confirmed
on March 23 when the purchase amounts shifted to “unlimited” and the Fed continued to purchase

41We find similar results using a weighted average of the yield responses where weights are given by the relative
supply of each.
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Table OA.3: US Announcement Effects

This table shows data for US. Sources: Gagnon et al. (2018), Vissing-Jorgensen (2021), and author’s calculations.
Quantities are given in billions (USD). The column “multiplier” indicates the percentage change in market value of
the securities divided by the percentage of market capitalization purchased.

Yield Responses Quantities
Date Treas Agy MBS Avg Treas Agy MBS Total Multiplier

11/25/08 -22 -58 -44 -41.33 Up to 0 100 500 600 0.80
12/1/08 -19 -39 -15 -24.33 May expand

12/16/08 -26 -29 -37 -30.67 Expanding
1/28/09 14 14 11 13.00 Expanding
3/18/09 -47 -52 -31 -43.33 Up to 300 200 1250 1750 0.29
4/29/09 10 -1 6 5.00
6/24/09 6 3 2 3.67
8/12/09 5 4 2 3.67 Drop ”up to”
9/23/09 -3 -3 -1 -2.33
11/4/09 6 8 1 5.00 175 175 -0.33

Total QE1 -76 -153 -106 -111.67 300 475 1750 2525 0.51
3/15/20 -17 -17.00 At least 500 200 700 0.07
3/23/20 0 0.00 Unlimited 500 500 0.00

large quantities. These announcements quickly translated into actual purchases – within three
weeks of the initial March 15 announcement the Fed had purchased over $1 trillion in Treasuries.
Still, the announcements had no effect on yields as shown in Vissing-Jorgensen (2021).

Vissing-Jorgensen (2021) argues that the purchases themselves, rather than the announcements,
had an impact in March 2020, possibly because of large frictions and selling pressure in Treasury
markets at the time. However, even this effect is modest. Vissing-Jorgensen (2021) states “that
an increase of 0.1 (buying 10% of supply) leads to a 5.35 bps larger decline in yields.” Using
a duration of ten years would then imply a 50 bps price increase, or a multiplier of about 0.05.
Thus, regardless of whether one uses announcements or actual purchases, the COVID-19 period
features a very low multiplier relative to QE1. The natural interpretation is that the bond market
expected large purchases of Treasuries given the prior experience of QE. Under this view, it is
not that purchases were not effective, just that the market already expected them to occur so the
announcement is not informative about effectiveness.

The results for Treasuries during COVID-19 also contrast sharply with what we document
for corporate bonds. The key difference is that the Fed had never before purchased corporate
bonds and thus the announcement was a surprise. Further, once the corporate bond announcement
was made, the market understood the implications for future state-contingent purchases more im-
mediately compared to quantitative easing in 2008 where learning appeared to occur over a few
announcements.

This experience also contrasts with the Bank of Canada (Arora et al., 2021) during the same
time period. The Bank of Canada announced purchases of government bonds on March 27, 2020.
Government bond yields declined immediately on the announcement as shown in Arora et al.
(2021). Importantly, this was the first time the Bank of Canada implemented a large-scale asset
purchase program involving government securities, contrasting with the US experience where such
purchases were made in the global financial crisis.
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Table OA.4: ECB Announcement Effects

This table shows data for ECB. Sources: Krishnamurthy et al. (2018) and author’s calculations. Quantities are given in
billions (Euros). We use average yield responses across maturities for each sovereign in Krishnamurthy et al. (2018)
and the 10 year yield if the average is not available. The column “multiplier” indicates the percentage change in market
value of the securities divided by the percentage of market capitalization purchased.

Type Date Italy Spain Portugal Ireland Greece Avg Quantity Multiplier
SMP1 5/10/10 -47 -62 -219 -127 -500 -191 75 3.49
SMP2 8/7/11 -84 -92 -120 -49 -3 -69.6 145 0.99
OMT1 7/26/12 -72 -89 -12 -78 -62.75 unspecified
OMT2 8/2/12 -23 -41 -8 -67 -34.75 unspecified
OMT3 9/6/12 -31 -54 -98 -36 -54.75 unspecified
LTRO 12/1/11 -46 -61 -27 -147 -70.25 lend to banks
LTRO 12/8/11 35 30 9 90 41 lend to banks

In summary, the evidence from asset purchases in the United States is quite clear: earlier
announcements of a particular policy appear to have the largest impact on prices. This is apparent
even in the early stages of quantitative easing (“QE1”). Beyond QE1, announcement effects have
effectively disappeared for Treasuries, Agency debt, and MBS. This does not seem to be due to
variation in the economic conditions around the announcements.

K.1.3 Eurozone

Table OA.4 gives results for the European Central Bank announcements in 2010-2011 during the
European sovereign debt crisis. We use yield data from Krishnamurthy et al. (2018) (see their
Table 3). It is difficult to immediately compare yield changes and tie them to quantities as specific
quantities are only given for the first two announcements. The first announcement in May of
2010 had the largest effect on sovereign yields, with an average decline in yields of 190 bps.
Given the quantity announced of C=75 billion, this large decline in yields suggests a multiplier of
around 3.5, where we construct this number using the total debt of the five countries considered
and the average duration of the bonds purchased from Krishnamurthy et al. (2018). The next
announcement in August saw a much smaller, though still substantial, decline in yields of about
70 bps. This translates to a significantly smaller multiplier.

Next, we note that there were three separate programs for the ECB sovereign crisis. The Secu-
rities Markets Programme (SMP), the Outright Monetary Transactions (OMT), and the Long-Term
Refinancing Operations (LTROs). Each program was different. The SMP was the only one that
involved direct purchases. As discussed, the first SMP announcement carried much larger effects
than the second, consistent with investors forming expectations of future announcements from the
initial announcement. The OMT featured conditional commitments to purchase government debt.
Again, the strongest response comes from the initial OMT announcement consistent with the state-
contingent view. No purchases were made during the OMT program. Finally, the LTRO extended
loans to banks. The LTRO announcements feature the same declining pattern.

In sum, the ECB announcements that involved direct purchases of sovereign debt (SMP) fea-
ture declining multipliers. Other programs aimed at reducing sovereign yields had declining effec-
tiveness after the initial announcement was made.

Overall, the promises view provides a consistent and simple way to interpret the variation in
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the announcement effects we observe. Initial announcements induce investors to form expectations
of future and more aggressive interventions in adverse states, and as a result, are associated with
large effects. Conversely, the often larger follow-on interventions tend to induce only a muted price
response as they are already baked in.

K.2 Longer-Run Effects on Risk in Corporate Bond Markets
We investigate the long-run effects of the Fed’s corporate bond intervention by looking at how the
dynamics of corporate bond tail risk changes after the programs are implemented. While our main
analysis documents how the Fed’s introduction of the policy has the immediate effect of reducing
this tail risk when the Fed initially announces it will intervene, we now assess whether tail risk
is less sensitive to economic conditions going forward. These longer-term effects are not easily
captured in our earlier framework which focuses on conditional promises over shorter maturities
at which we have option price data. The challenge is to have a good benchmark for how tail risk
would behave absent interventions. We look at a variety of approaches to deal with this challenge,
though these results should be taken as suggestive and depend on how reasonable our benchmarks
are.

Our first approach constructs a tail risk index for corporate bonds using the slope of the implied
volatility curve. We take implied volatility for options with a delta of 90 and subtract the implied
volatility for option with delta of 10. This difference is insensitive to parallel movements in the
implied volatility curve and increases when the implied volatility of the left tail rises relative to the
right tail. We then take the same tail risk measure using S&P500 index options as well as options
on the investment grade CDX index.

Table OA.5 shows that tail risk sensitivity changed after the announcements: tail risk in cor-
porate bond markets are usually positively related to tail risk in equity or CDS markets; after the
interventions, this sensitivity disappears altogether. Specifically, we regress the corporate bond
tail risk on tail risk in equities and CDS markets using daily data from 2010 onward (for CDS,
we only have data from 2015 onward). We then include a “post” dummy interaction term for the
period after April 9, 2020 when the Fed had already announced the expansion of its corporate
bond facilities. Notably, in the period prior to this, corporate bond tail risk and equity market tail
risk co-move strongly so that tail risk in corporate bonds was highly sensitive to tail risk in equity
markets.

The post interaction term is strongly negative and statistically significant, meaning corporate
bond tail risk becomes much less sensitive to broader tail risk in the economy after the interven-
tions. The sum of the two coefficients represents the total sensitivity in the post period and is, if
anything, slightly negative. We find similar results using the CDS index in place of the stock mar-
ket as a gauge of tail risk variation in corporate bonds. The CDS index is useful because it is a more
direct measure of the cash-flow risk that corporate bonds are exposed to. Finally, the results in the
pre-period are not driven by extreme behavior during the acute phase of COVID where all tail risk
measures spike. To show this, we add a COVID dummy, equal to 1 for the period of February 1,
2020 to April 9, 2020. Including an interaction with this dummy doesn’t change our conclusions,
and in this case the non-interacted coefficient measures the sensitivity of corporate bond tail risk to
other tail risk excluding the COVID episode. Finally, consistent with the persistence of promises,
we find no difference if we change the post period to June after the purchases occur.

This declining sensitivity is not only present in tail risk, but also in overall bond yields. In
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Table OA.5: Long Term Effects on Corporate Bond Tail Risk

This table measures the sensitivity of tail risk in corporate bond markets to tail risk in the stock market (using S&P500
index options) and CDS market (using options on the investment grade CDX index) in daily data from 2010-2021.
The dummy “post” equal 1 after April 9, 2020, the dummy “covid” equals 1 from February 1, 2020 to April 9, 2020.
Interaction effects capture whether this sensitivity is lower after Fed interventions. Robust standard errors given in
parentheses.

(1) (2) (3) (4)
TailCorpBond

t TailCorpBond
t TailCorpBond

t TailCorpBond
t

TailSP500
t 0.59*** 0.43***

(0.05) (0.02)
TailSP500

t × post -0.78*** -0.63***
(0.07) (0.05)

TailSP500
t × covid 0.68***

(0.15)
TailCDS

t 0.27*** 0.14***
(0.04) (0.02)

TailCDS
t × post -0.37*** -0.24***

(0.04) (0.02)
TailCDS

t × covid 0.90***
(0.16)

post 0.16*** 0.14*** -0.06*** -0.02*
(0.01) (0.01) (0.01) (0.01)

covid -0.12*** 0.35***
(0.03) (0.06)

Constant -0.04*** -0.02*** 0.11*** 0.06***
(0.01) (0.00) (0.01) (0.01)

Observations 2,769 2,769 1,510 1,510
R-squared 0.25 0.29 0.26 0.44

Appendix Table OA.6, we find that corporate bond returns are usually negatively related to changes
in the VIX. This sensitivity is divided in half in the post-intervention period.

Figure OA.13 instead uses monthly data on option-based pseudo credit spreads from Culp et al.
(2018). These pseudo-spreads are constructed by equity options and Treasuries — not corporate
bonds — and have been shown in earlier samples to exhibit remarkably similar properties than the
actual spreads. We use the two-year maturity investment-grade pseudo credit spread from Culp
et al. (2018).42 We then compare this spread to the Bank of America investment grade option-
adjusted credit spread index for maturities between one and three years taken from FRED. We plot
both the actual credit spreads and pseudo spreads in Figure OA.13. From 2010 to 2020, the two
spreads track each other quite well. In early 2020, when the COVID-19 crisis hits, actual spreads
for investment-grade spike well beyond those implied by equity market options, consistent with
investment grade bond prices becoming abnormally depressed in this episode. However, following
the Fed’s intervention, investment-grade spreads become quite low, and in fact reach their lowest
point at any time over the 2010-2020 window. In contrast, equity markets still feature substantial
volatility, implying higher than usual default risk on pseudo-bonds. This large gap is consistent
with a market pricing of future interventions: a crash is still possible and priced in equity options,
but the Fed would intervene in corporate bond markets and make it disappear.

Consistent with our evidence of abnormally low credit spreads after the intervention, Bo-
yarchenko et al. (2020) and Becker and Benmelech (2021) find abnormally large issuance of

42We obtain the data from The Credit Risk Lab.
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Figure OA.13: Spreads and Pseudo Spreads.
This figure plots actual credit spreads and pseudo spreads from Culp et al. (2018).

investment-grade bonds by firms after the interventions, and Balthrop and Bitting (2022) find this
effect is persistent for firms eligible for Fed purchases under the original SMCCF facility.43 Again,
this increase in issuance fits with the narrative of an implicit subsidy of low spreads due to expec-
tations of future Fed support.

43See also Acharya et al. (2022) who show empirical evidence that quantitative easing impacted firms bond issuance
behavior
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Table OA.6: Long Term Effects on Corporate Bond Prices

Panel A measures the sensitivity of daily corporate bond excess returns to daily changes in the VIX. Panel B measures
the sensitivity of monthly changes in corporate bond spreads to changes in pseudo bond spreads implied by equity
options from Culp et al. (2018). The dummy “post” equal 1 after April 9, 2020, the dummy “covid” equals 1 from
February 1, 2020 to April 9, 2020. Interaction effects capture whether this sensitivity is lower after Fed interventions.
Robust standard errors given in parentheses.

Panel A: Corp Bond Returns
(1) (2)

rCorpBond,e
t rCorpBond,e

t

∆VIXt -0.21*** -0.20***
(0.02) (0.02)

∆VIXt × post 0.10*** 0.08***
(0.03) (0.03)

∆VIXt × covid -0.05
(0.04)

post 0.04 0.03
(0.03) (0.03)

covid -0.12
(0.34)

Constant -0.01 -0.01
(0.01) (0.01)

Observations 2,987 2,987
R-squared 0.26 0.26

Panel B: Credit Spreads and Option-Based Pseudo Spreads
(1) (2)

∆spreadt ∆spreadt

∆pseudot 0.41** 0.16***
(0.19) (0.05)

∆pseudot × post -0.62*** -0.37***
(0.23) (0.13)

∆pseudot × covid 1.74***
(0.38)

post -0.11** -0.10**
(0.05) (0.05)

covid 0.08
(0.23)

Constant 0.00 -0.01
(0.02) (0.01)

Observations 135 135
R-squared 0.22 0.69
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