# The Macroeconomics of Shadow Banking

Alan Moreira <sub>Yale</sub> SOM Alexi Savov NYU Stern & NBER



January, 2016

# Shadow banking, what is it good for?

#### Three views:

- 1. Regulatory arbitrage
  - avoid capital requirements, exploit implicit guarantees
- 2. Neglected risks
  - package risky investments as safe, pass on to unsuspecting investors
- 3. Liquidity transformation
  - create money-like liquid instruments from a broader set of assets

## Shadow banking, what is it good for?

#### Three views:

- 1. Regulatory arbitrage
  - avoid capital requirements, exploit implicit guarantees
- 2. Neglected risks
  - package risky investments as safe, pass on to unsuspecting investors
- 3. Liquidity transformation
  - create money-like liquid instruments from a broader set of assets

All reform proposals take an implicit stance

# The liquidity transformation view of shadow banking





- 1. Shadow banking turns risky assets into liquid liabilities
  - $\Rightarrow\,$  expands credit to the economy and liquidity provision to households/institutions
- 2. Bigger booms, deeper busts
  - $\Rightarrow$  tradeoff between growth and fragility

# Our framework

- 1. Investors demand liquid securities to consume in high marginal-utility states (liquidity events)
  - liquidity  $\Leftrightarrow$  low shock exposure  $\Leftrightarrow$  overcollateralization
- 2. Intermediaries invest in assets and finance with
  - money safe  $\Rightarrow$  always liquid (e.g. government money market fund)
  - equity residual  $\Rightarrow$  illiquid (e.g. "toxic waste" CDO tranche)
  - shadow money safe except in a crash ⇒ liquid except in a crash (e.g. Financial CP, ABCP, private-label repo, etc.)

### Our framework

- 1. Investors demand liquid securities to consume in high marginal-utility states (liquidity events)
  - liquidity  $\Leftrightarrow$  low shock exposure  $\Leftrightarrow$  overcollateralization
- 2. Intermediaries invest in assets and finance with
  - money safe  $\Rightarrow$  always liquid (e.g. government money market fund)
  - equity residual  $\Rightarrow$  illiquid (e.g. "toxic waste" CDO tranche)
  - shadow money safe except in a crash  $\Rightarrow$  liquid except in a crash (e.g. Financial CP, ABCP, private-label repo, etc.)
- 3. Collateral constrains liquidity provision:

- tradeoff between quantity and fragility of the liquidity supply

4. Uncertainty drives demand for fragile vs. crash-proof liquidity

# MODEL ROADMAP

- 1. Static model for core mechanism, analytical expressions
- 2. Dynamic model for amplification, cycles, and effects of policy

#### Static model: preferences, endowment, and information

1. Three dates, 0 , 1 and 2. Investors subject to liquidity events

$$U_0 = \max E_0 [z_1 C_1 + C_2]$$

- $z_1 \in \{1,\psi\}$  , where  $z_1 = \psi$  privately-observed liquidity event
- $z_1 = \psi$  with probability *h*, i.i.d. across investors

#### Static model: preferences, endowment, and information

1. Three dates, 0 , 1 and 2. Investors subject to liquidity events

$$U_0 = \max E_0 \left[ z_1 C_1 + C_2 \right]$$

- $z_1 \in \{1, \psi\}$ , where  $z_1 = \psi$  privately-observed liquidity event -  $z_1 = \psi$  with probability *h*, i.i.d. across investors
- 3. Promises require collateral. Endowed with asset that pays

$$Y_2 = \begin{cases} 1 + \mu_Y, & \text{prob.} \quad 1 - \lambda_0 \quad (\text{normal times}) \\ 1 - \kappa_Y, & \text{prob.} \quad \lambda_0 \quad (\text{crash}) \end{cases}$$

- normalize  $E_0[Y_2] = 1$  ,  $\lambda_0$  measures uncertainty

- normalize  $q_0 = 1$ , assets are the numeraire

#### Static model: preferences, endowment, and information

1. Three dates, 0 , 1 and 2. Investors subject to liquidity events

$$U_0 = \max E_0 \left[ z_1 C_1 + C_2 \right]$$

- $z_1 \in \{1, \psi\}$ , where  $z_1 = \psi$  privately-observed liquidity event -  $z_1 = \psi$  with probability *h*, i.i.d. across investors
- 3. Promises require collateral. Endowed with asset that pays

$$Y_2 = \begin{cases} 1 + \mu_Y, & \text{prob.} \quad 1 - \lambda_0 \quad (\text{normal times}) \\ 1 - \kappa_Y, & \text{prob.} \quad \lambda_0 \quad (\text{crash}) \end{cases}$$

- normalize  $E_0[Y_2]=1$  ,  $\lambda_0$  measures uncertainty
- normalize  $q_0 = 1$ , assets are the numeraire
- 3. Information
  - Date 1 public signal reveals updated crash prob. ,  $\lambda_1 \in \{\lambda^L, \lambda^H\}$
  - Date 1 private signal costs f and reveals asset payoff  $Y_2$

# Securities and liquidity

Assumption (Liquidity)

Investors in a liquidity event trade only claims that they can sell for their present value under public information. We call these liquid claims.

1. Intermediaries buy assets at date 0 and tranche into securities - security x with yield  $\mu_{x_1}$  crash exposure  $\kappa_x$ :

$$r_2^{x} = \begin{cases} 1 + \mu_x, & \text{if } Y_2 = 1 + \mu_Y \text{ (normal times)} \\ 1 - \kappa_x, & \text{if } Y_2 = 1 - \kappa_Y \text{ (crash)} \end{cases}$$

# Securities and liquidity

Assumption (Liquidity)

Investors in a liquidity event trade only claims that they can sell for their present value under public information. We call these liquid claims.

- $1. \ \mbox{Intermediaries buy assets at date 0 and tranche into securities}$ 
  - security x with yield  $\mu_x$ , crash exposure  $\kappa_x$ :

$$r_2^{x} = \begin{cases} 1 + \mu_x, & \text{if } Y_2 = 1 + \mu_Y \text{ (normal times)} \\ 1 - \kappa_x, & \text{if } Y_2 = 1 - \kappa_Y \text{ (crash)} \end{cases}$$

- 2. Implications of Assumption 1
  - Liquid security needs sufficiently low  $\kappa_{\rm x}$  to deter info. production
  - Security liquid when  $\lambda_1 = \lambda^L$  might not be when  $\lambda_1 = \lambda^H$

#### Proposition (Securities)

Intermediaries optimally issue the following three securities:

- i. money m with  $\kappa_m = 0$  is liquid for  $\lambda_1 \in \{\lambda^L, \lambda^H\}$  (always-liquid);
- ii. shadow money s with  $\kappa_s = \overline{\kappa}$  is liquid if  $\lambda_1 = \lambda^L$  (fragile-liquid);
- iii. equity e with  $\kappa_e = 1$  is illiquid,

where  $0 < \overline{\kappa} < 1$  under appropriate parameter restrictions.

#### Balance sheet view



#### Equilibrium

Equilibrium allocation solves

$$\max_{m_0, s_0 \ge 0} E_0 \Big[ h(\psi - 1) C_1 + Y_2 \Big]$$
(1)

subject to  $m_0 + s_0 \leq 1$ , the liquidity constraint

$$C_{1} \leq \begin{cases} m_{0} + s_{0} & \text{if } \lambda_{1} = \lambda^{L}, \text{ prob. } 1 - p_{H}(\lambda_{0}) \\ m_{0} & \text{if } \lambda_{1} = \lambda^{H}, \text{ prob. } p_{H}(\lambda_{0}), \end{cases}$$
(2)

and the collateral constraint

$$m_0 + s_0 (1 - \overline{\kappa}) \leq 1 - \kappa_Y. \tag{3}$$

Investors weigh

- the liquidity advantage of money  $p_H(\lambda_0)$  against
- the collateral advantage of shadow money  $\overline{\kappa}$

# Equilibrium

Proposition (Equilibrium security issuance)

Suppose that  $\overline{\kappa} \leq \kappa_Y$ . Then in equilibrium money and shadow money issuance,  $m_0$  and  $s_0$ , is as follows:

- i. if  $p_H(\lambda_0) \leq \overline{\kappa}$ , then  $m_0 = 0$  and  $s_0 = \frac{1-\kappa_Y}{1-\overline{\kappa}}$ ;
- ii. if  $p_H(\lambda_0) > \overline{\kappa}$ , then  $m_0 = 1 \kappa_Y$  and  $s_0 = 0$ .

Trade-off between quantity and stability of the liquidity supply

- Low uncertainty, shadow money crowds out money (supply large but fragile)
- High uncertainty, only money issued (supply small but stable)

# MODEL ROADMAP

- 1. Static model for analytical expressions
- 2. Dynamic model for amplification, cycles, and effects of policy

#### Capital accumulation

1. Two technologies: A high-growth risky; B low-growth safe

$$\frac{dk_t^a/k_t^a}{dk_t^b/k_t^b} = \left[\phi^a\left(\iota_t^a\right) - \delta\right] dt - \kappa^a \frac{dZ_t}{dk_t^b/k_t^b} = \left[\phi^b\left(\iota_t^b\right) - \delta\right] dt$$

- investment  $\iota_t^a$ ,  $\iota_t^b$ ; adjustment cost  $\phi'' < 0$ ; depreciation  $\delta$
- $dZ_t \sim$  compensated (mean-zero) Poisson "crash", exposure  $\kappa^a > 0$
- intensity  $\lambda_t$ , measures uncertainty

#### Capital accumulation

1. Two technologies: A high-growth risky; B low-growth safe

$$\frac{dk_t^a/k_t^a}{dk_t^b/k_t^b} = \left[\phi^a\left(\iota_t^a\right) - \delta\right] dt - \kappa^a \frac{dZ_t}{dk_t^b/k_t^b} = \left[\phi^b\left(\iota_t^b\right) - \delta\right] dt$$

- investment  $\iota_t^a$ ,  $\iota_t^b$ ; adjustment cost  $\phi^{\prime\prime} <$  0; depreciation  $\delta$
- $dZ_t \sim$  compensated (mean-zero) Poisson "crash", exposure  $\kappa^a > 0$
- intensity  $\lambda_t$ , measures uncertainty
- 2. Output  $y_t = y^a k_t^a + y^b k_t^b$ 
  - productivity  $y^a > y^b$
  - capital mix becomes slow-moving state variable

$$\chi_t = \frac{k_t^a}{k_t^a + k_t^b}$$

#### Time-varying uncertainty

1. Latent true probability of a crash  $\tilde{\lambda}_t \in \left\{\lambda^L, \lambda^H\right\}$ 

- follows two-state Markov chain with generator unconditional mean  $\overline{\lambda}$  and overall transition rate  $\varphi$
- agents learn from crashes  $(dZ_t)$  and Brownian "news"  $(dB_t)$

#### Time-varying uncertainty

1. Latent true probability of a crash  $\tilde{\lambda}_t \in \left\{\lambda^L, \lambda^H\right\}$ 

- follows two-state Markov chain with generator unconditional mean  $\overline{\lambda}$  and overall transition rate  $\varphi$
- agents learn from crashes  $(dZ_t)$  and Brownian "news"  $(dB_t)$
- 2. Bayesian learning  $\Rightarrow$  time-varying uncertainty  $\lambda_t = E_t[\tilde{\lambda}_t]$ 
  - low after a long quiet period (Great Moderation)
  - high after a crash (Reinhart-Rogoff)
  - jumps most from moderately low levels ("Minsky moment")

$$d\lambda_t = \varphi\left(\overline{\lambda} - \lambda_t\right) dt + \Sigma_t \left(\nu dB_t + \frac{1}{\lambda_t} dZ_t\right), \qquad (4)$$

where  $\Sigma_t \equiv (\lambda^H - \lambda_t) (\lambda_t - \lambda^L) = Var_t (\tilde{\lambda}_t)$ and  $\nu$  is the precision of the Brownian signal

#### Intermediaries and Markets

1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits

#### Intermediaries and Markets

- 1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits
- 2. Assets claims to one unit of capital. Asset prices  $q_t^i = q^i (\lambda_t, \chi_t)$

$$dq_t^i/q_t^i = \mu_{q,t}^i dt + \sigma_{q,t}^i dB_t - \kappa_{q,t}^i dZ_t, \ i = a, b$$

#### Intermediaries and Markets

- 1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits
- 2. Assets claims to one unit of capital. Asset prices  $q_t^i = q^i (\lambda_t, \chi_t)$

$$dq_t^i/q_t^i = \mu_{q,t}^i dt + \sigma_{q,t}^i dB_t - \kappa_{q,t}^i dZ_t, \ i = a, b$$

3. Intermediaries tranche assets into securities. With two shocks  $(dZ_t, dB_t)$ , a generic security x's return has the form

$$dr_t^{x} = \mu_{x,t}dt + \sigma_{x,t}dB_t - \kappa_{x,t}dZ_t.$$
(5)

Now we take the securities and liquidity profiles from before as given

- i. money *m* with  $\kappa_{m,t} = \sigma_{m,t} = 0$  is liquid with probability 1 (always-liquid);
- ii. shadow money s with  $\kappa_{s,t} = \overline{\kappa}$  and  $\sigma_{s,t} = 0$  is liquid with probability

$$1 - p_H(\lambda_t)$$
, where  $p'_H(\lambda_t) > 0$  (fragile-liquid);

iii. equity e with  $\kappa_{e,t} = 1$  and  $|\sigma_{e,t}| > 0$  is illiquid.

### Demand for liquidity and securities expected returns

$$\rho V_t dt = \max_{m_t, s_t, dc_t^{\psi}, c_t} E_t \left[ W_t \left( \psi dc_t^{\psi} dz_t + c_t dt \right) \right] + E_t \left[ dV_t \right]$$
(6)

subject to  $c_t^\psi \leq \overline{c}_t^\psi$  and the budget and liquidity constraints

$$\frac{dW_t}{W_t} = dr_t^e + m_t(dr_t^m - dr_t^e) + s_t(dr_t^s - dr_t^e) - c_t dt - dc_t^{\psi} dz_t$$

$$\frac{dc_t^{\psi}}{dc_t^{\psi}} \leq \begin{cases} m_t + s_t \text{ prob. } 1 - p_H(\lambda_t) \\ m_t \text{ prob. } p_H(\lambda_t). \end{cases}$$

#### Demand for liquidity and securities expected returns

$$\rho V_t dt = \max_{m_t, s_t, dc_t^{\psi}, c_t} E_t \left[ W_t \left( \psi dc_t^{\psi} dz_t + c_t dt \right) \right] + E_t \left[ dV_t \right]$$
(6)

subject to  $c_t^\psi \leq \overline{c}_t^\psi$  and the budget and liquidity constraints

$$\begin{aligned} \frac{dW_t}{W_t} &= dr_t^e + m_t (dr_t^m - dr_t^e) + s_t (dr_t^s - dr_t^e) - c_t dt - dc_t^{\psi} dz_t \\ dc_t^{\psi} &\leq \begin{cases} m_t + s_t & \text{prob.} \quad 1 - p_H (\lambda_t) \\ m_t & \text{prob.} \quad p_H (\lambda_t) . \end{cases} \end{aligned}$$

Risk-neutrality implies the problem simplifies to

$$\rho = \max_{m_t, s_t} h(\psi - 1) \left[ [1 - p_H(\lambda_t)] \int_0^\infty \min\{\overline{c}_t^{\psi}, m_t + s_t\} dF\left(\overline{c}_t^{\psi}\right) + p_H(\lambda_t) \int_0^\infty \min\{\overline{c}_t^{\psi}, m_t\} dF\left(\overline{c}_t^{\psi}\right) \right] + \mu_{W,t}.$$
(7)  
where  $F(\overline{c}_t^{\psi}) = Exp(\eta)$ 

### Demand for liquidity and securities expected returns

Proposition (Security expected returns)

The expected returns of money  $(\mu_{m,t})$ , shadow money  $(\mu_{s,t})$ , and equity  $(\mu_{e,t})$  satisfy

$$\mu_{e,t} - \mu_{m,t} = h(\psi - 1) \left( [1 - p_H(\lambda_t)] e^{-\eta(m_t + s_t)} + p_H(\lambda_t) e^{-\eta m_t} \right) \mu_{s,t} - \mu_{m,t} = h(\psi - 1) p_H(\lambda_t) e^{-\eta m_t}.$$

The aggregate discount rate  $(\mu_{W,t})$  satisfies

$$\mu_{W,t} = \left[\rho - \frac{h}{\eta}(\psi - 1)\right] + \frac{1}{\eta}(\mu_{e,t} - \mu_{m,t}).$$

A lower liquidity premium reduces the cost of consuming in a high marginal utility state, increasing savings.

#### Intermediaries

$$0 = \max_{m,s,k^{a},k^{b},\iota^{a},\iota^{b}} \left[ (y^{a} - \iota^{a}) k^{a} + (y^{b} - \iota^{b}) k^{b} \right] dt + E_{t} [dA_{t}] + A_{t} [m(\mu_{e,t} - \mu_{m,t}) + s(\mu_{e,t} - \mu_{s,t}) - \mu_{e,t}] + E_{t} [dV_{t}],$$

subject to the collateral constraint

$$m_t + s_t(1 - \overline{\kappa}) \leq 1 - \kappa_{A,t}, \ [\theta_t]$$
 (8)

#### Intermediaries

$$0 = \max_{m,s,k^{a},k^{b},\iota^{a},\iota^{b}} \left[ (y^{a} - \iota^{a}) k^{a} + (y^{b} - \iota^{b}) k^{b} \right] dt + E_{t} [dA_{t}] + A_{t} [m(\mu_{e,t} - \mu_{m,t}) + s(\mu_{e,t} - \mu_{s,t}) - \mu_{e,t}] + E_{t} [dV_{t}],$$

subject to the collateral constraint

$$m_t + s_t(1 - \overline{\kappa}) \leq 1 - \kappa_{A,t}, \ [\theta_t]$$
 (8)

where the aggregate collateral value is the value weighted sum of asset collateral values

$$1 - \kappa_{\boldsymbol{A},t} = \chi_t^q \left(1 - \kappa_k^a\right) \left(1 - \kappa_{\boldsymbol{q},t}^a\right) + \left(1 - \chi_t^q\right) \left(1 - \kappa_{\boldsymbol{q},t}^b\right), \quad (9)$$

- collateral values depend on the endogenous price exposure.
- $\theta$  low when asset B supply is high or shadow-money money spread  $\mu_{s,t} \mu_{m,t}$  is high
- $1-\kappa^b_{q,t} \lessgtr 1$  safe asset becomes risk because changes in the collateral premium  $\theta_t$

### Intermediaries and the supply of liquidity

Proposition (Equilibrium security issuance) Let  $\mathcal{M}_t \equiv \frac{1}{\eta} \log \left( \frac{\overline{\kappa}}{1-\overline{\kappa}} \frac{1-p_H(\lambda_t)}{p_H(\lambda_t)} \right)$ . Then in equilibrium issuance follows i. if  $\mathcal{M}_t > \min \left\{ \frac{\kappa_{A,t}}{\overline{\kappa}}, \frac{1-\kappa_{A,t}}{1-\overline{\kappa}} \right\}$ ,  $m_t = \max \left\{ 0, 1 - \frac{\kappa_{A,t}}{\overline{\kappa}} \right\}$  and  $s_t = \min \left\{ \frac{1-\kappa_{A,t}}{1-\overline{\kappa}}, \frac{\kappa_{A,t}}{\overline{\kappa}} \right\}$ ; ii. if  $0 \le \mathcal{M}_t \le \min \left\{ \frac{\kappa_{A,t}}{\overline{\kappa}}, \frac{1-\kappa_{A,t}}{1-\overline{\kappa}} \right\}$ ,  $m_t = 1 - \kappa_{A,t} - (1 - \overline{\kappa}) \mathcal{M}_t$  and  $s_t = \mathcal{M}_t$ ; and iii. if  $\mathcal{M}_t < 0$ ,  $m_t = 1 - \kappa_{A,t}$  and  $s_t = 0$ .

 $\mathcal{M}_t$  measures marginal value of first unit of shadow money

# Intermediaries and the supply of liquidity



#### Intermediaries: asset prices and investment

1. Intermediaries can scale up their balance sheets by issuing more securities and buying more assets. We get a PDE:

$$q_t^i = rac{y^i - \iota_t^i}{\left(\mu_{W,t} - heta_t \left[ \left(1 - \kappa_t^i 
ight) - \left(1 - \kappa_{A,t} 
ight) 
ight] 
ight) - \left[ \mu_{q,t}^i + \kappa_k^i \kappa_{q,t}^i \lambda_t + \phi\left(\iota_t^i\right) - \delta 
ight]}$$

- term in brackets is the asset expected return: assets with higher collateral value discounted at a lower rate
- When collateral becomes scarce (high  $\theta$ ), assets with high collateral value experience flight to quality

#### Intermediaries: asset prices and investment

1. Intermediaries can scale up their balance sheets by issuing more securities and buying more assets. We get a PDE:

$$q_t^i = \frac{y^i - \iota_t^i}{\left(\mu_{W,t} - \theta_t \left[ (1 - \kappa_t^i) - (1 - \kappa_{A,t}) \right] \right) - \left[ \mu_{q,t}^i + \kappa_k^i \kappa_{q,t}^i \lambda_t + \phi\left(\iota_t^i\right) - \delta \right]}$$

- term in brackets is the asset expected return: assets with higher collateral value discounted at a lower rate
- When collateral becomes scarce (high  $\theta$ ), assets with high collateral value experience flight to quality
- 2. Intermediaries set investment, driven by standard *q*-theory:

$$1 = q_t^i \phi'(\iota_t^i), \quad i = a, b.$$

# RESULTS

- 1. Parameter values in paper
- 2. Model in closed form up to prices
- 3. Solve for prices  $q^i(\chi, \lambda), i = a, b$  numerically using projection methods

# Security markets



- 1. Shadow banking booms in low uncertainty-low collateral states
  - crowds out money creation in booms
  - disappears when uncertainty rises from a low level (e.g. August 07)
- 2. Money is produced most when collateral is abundant (low  $\chi$ ).

#### Discount rates



- 1. Higher uncertainty causes the shadow-money money spread to rise, shadow banking contracts, lower liquidity supply causes liquidity premium and overall discount rate to rise
- 2. Discount rates are more uncertainty-sensitive when shadow banking activity is high (low uncertainty, low collateral)

#### Asset markets



- 1. Higher uncertainty causes the collateral premium to rise, lowers the price of the risky asset and raises the price of the safe asset
- 2. Riskier asset mix  $\chi$  means less collateral, lowers  $q^a$  and raises  $q^b$

#### The macroeconomy



- 1. Growth more uncertainty-sensitive when shadow banking is high (collateral and uncertainty are low)
- 2. Real boom coincides with shadow banking boom

### The macro cycle



- 1. Capital mix drifts towards risky asset during shadow banking boom
- 2. Capital mix drifts towards safe asset during bust
- $\Rightarrow$  Fragility buildup in booms, collateral mining in bust

Moreira and Savov (2015)

#### Collateral runs



- 1. Collateral values fall as prices fall  $\Rightarrow$  prices fall more, etc.
- 2. Amplifies liquidity contraction
- 3. Flight to quality implies safe assets have excess collateral

### Cycles are a product of shadow banking



# EFFECTS OF POLICY INTERVENTIONS

### QE1 - Large-Scale Asset Purchases

1. Fed buys risky a and sells safe b asset (Ricardian)



### QE2 - Operation Twist

 $1. \ \mbox{Fed}$  buys long-term safe bonds and sells short-term safe bonds.

- long-term safe bond acts as crash hedge due to flight to quality
- short-term safe bond safe but not a hedge



2. OT reduces the supply of collateral  $\Rightarrow$  liquidity provision falls  $\Rightarrow$  discount rates rise, especially for risky/productive assets

## Liquidity requirements

1. Limit liquidity mismatch:  $m_t + s_t < \bar{l}$ 



15% liquidity requirement - - - No liquidity requirement

- 3. Mitigate collateral runs, enhance financial stability
- 4. But higher discount rates, lower prices

# Monetary policy normalization

- 1. Pre-crisis view: short-term rate captures monetary policy stance
- 2. Our framework:

$$Tbill \ rate \ = \ \begin{pmatrix} aggregate \\ discount \ rate \end{pmatrix} \ - \ \frac{\theta_t}{\theta_t} \begin{pmatrix} collateral \ value \\ of \ Tbill \end{pmatrix}$$

- $\Rightarrow$  Tbill rate can be low if collateral premium  $\theta_t$  is high and policy *tight*
- 3. Reverse repo facility
  - "... should help to establish a floor on the level of overnight rates." (Dudley, 2013)
  - accommodative, even though pushes the safe rate up
  - releases collateral to financial system  $(\theta_t \searrow)$

#### Takeaways

- $1.\ \mbox{Liquidity transformation}$  and the macro cycle
  - tradeoff between quantity and fragility of liquidity provision
- 2. Shadow banking expands liquidity supply in booms
  - lower discount rates, more investment, more growth
  - increases economic and financial fragility
- 3. Framework has implications for
  - monetary policy, financial stability regulation

#### Takeaways

- $1. \ \mbox{Liquidity transformation}$  and the macro cycle
  - tradeoff between quantity and fragility of liquidity provision
- 2. Shadow banking expands liquidity supply in booms
  - lower discount rates, more investment, more growth
  - increases economic and financial fragility
- 3. Framework has implications for
  - monetary policy, financial stability regulation

Is it better to have been liquid and lost than never to have been liquid at all?

# **APPENDIX**

#### Benchmark parameters

This table contains the benchmark values for the model parameters used to produce results for the dynamic model. The investment cost function is parameterized as  $\phi(\iota) = 1/\gamma \left(\sqrt{1+2\gamma\iota}-1\right)$ . We use the specification implied by the static model for the probability that shadow money becomes illiquid. i.e.  $p_H(\lambda) = \left(\lambda - \lambda^L\right) / \left(\lambda^H - \lambda^L\right)$ .

| Description                                        | Parameter                  | Value      |
|----------------------------------------------------|----------------------------|------------|
| Technology:                                        |                            |            |
| Asset cash flows                                   | $y^a, y^b$                 | 0.138, 0.1 |
| Depreciation rate                                  | δ                          | 0.1        |
| Exogenous aggregate growth                         | $\mu_0$                    | 0.01       |
| Adjustment cost parameter                          | $\gamma$                   | 3          |
| Asset crash exposures                              | $\kappa^{a}, \kappa^{b}$   | 0.5,0      |
| Information sensitivity constraint:                |                            |            |
| Crash exposure limit for fragile liquid securities | $\overline{\kappa}$        | 0.7        |
| Uncertainty:                                       |                            |            |
| Low/high uncertainty states                        | $\lambda^{L}, \lambda^{H}$ | 0.005,1    |
| Average uncertainty                                | $\overline{\lambda}$       | 0.0245     |
| Uncertainty rate of mean reversion                 | φ                          | 0.5        |
| Uncertainty news signal precision                  | $1/\sigma$                 | 0.1        |
| Preferences and liquidity events:                  |                            |            |
| Liquidity event frequency                          | h                          | 0.28       |
| Liquidity event marginal utility                   | $\psi$                     | 5          |
| Average size of liquidity event                    | $1/\eta$                   | 0.33       |
| Subjective discounting parameter                   | $\rho$                     | 0.37       |

#### Uncertainty shock impulse responses



# Crash shock impulse responses

