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a b s t r a c t 

We construct a text-based measure of uncertainty starting in 1890 using front-page ar- 

ticles of the Wall Street Journal . News implied volatility (NVIX) peaks during stock market 

crashes, times of policy-related uncertainty, world wars, and financial crises. In US postwar 

data, periods when NVIX is high are followed by periods of above average stock returns, 

even after controlling for contemporaneous and forward-looking measures of stock market 

volatility. News coverage related to wars and government policy explains most of the time 

variation in risk premia our measure identifies. Over the longer 1890–2009 sample that 

includes the Great Depression and two world wars, high NVIX predicts high future returns 

in normal times and rises just before transitions into economic disasters. The evidence is 

consistent with recent theories emphasizing time variation in rare disaster risk as a source 

of aggregate asset prices fluctuations. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Looking back, people’s concerns about the future more

often than not seem misguided and overly pessimistic.

Only when these concerns are borne out in some tan-

gible data do economists tip their hat to the wisdom

of the crowd. This gap between measurement and the
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concerns of the average investor is particularly severe for

rare events. In this case, concerns can change frequently,

but real economic data often make these concerns seem

puzzling and unwarranted. This paper aims to quantify this

spirit of the times, which, after the dust settles, is forgotten

and only hard data remain to describe the period. Our goal

is to measure people’s perception of uncertainty about the

future and to use this measurement to investigate what

types of uncertainty drive aggregate stock market risk

premia. 

We start from the idea that time variation in the top-

ics covered by the business press is a good proxy for the

evolution of investors’ concerns regarding these topics. 1

We estimate a news-based measure of uncertainty derived

from the co-movement between the front-page coverage of

the Wall Street Journal and options implied volatility (VIX).
1 This idea is consistent with the Gentzkow and Shapiro (2006) empir- 

ically supported model ofnews firms. 

http://dx.doi.org/10.1016/j.jfineco.2016.01.032
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We call this measure news implied volatility, or NVIX for 

short. NVIX has two useful features that allow us to fur- 

ther our understanding of the relation between uncertainty 

and expected returns: (1) It has a long time series, ex- 

tending back to the last decade of the 19th century and 

covering periods of large economic turmoil, wars, govern- 

ment policy changes, and crises of various sorts; (2) Its 

variation is interpretable and provides insight into the ori- 

gins of risk variation. The first feature enables us to study 

how compensation for risks reflected in newspaper cover- 

age has fluctuated over time, and the second feature al- 

lows us to identify which kinds of risk were important to 

investors. 

We rely on machine learning techniques to uncover in- 

formation from this rich and unique text data set. We esti- 

mate the relationship between option prices and the fre- 

quency of words using support vector regression (SVR). 

The key advantage of this method over ordinary least 

squares (OLS) is its ability to deal with a large feature 

space. We find that NVIX predicts VIX well out-of-sample, 

with a root mean squared error (RMSE) of 7.48 percent- 

age points ( R 2 = 0 . 19 ). When we replicate our methodol- 

ogy with realized volatility instead of VIX, it works well 

even going decades back in time, suggesting that newspa- 

per word choice is fairly stable over this period. 2 

Asset pricing theory predicts that fluctuation in op- 

tions implied volatility is a strong predictor of stock mar- 

ket returns as it measures fluctuation in expected stock 

market volatility ( Merton, 1973 ), in the variance risk pre- 

mium ( Drechsler, 2013; Drechsler and Yaron, 2011 ), and in 

the probability of large economic disasters ( Gabaix, 2012; 

Gourio, 2008; 2012; Wachter, 2013 ). Motivated by these 

works we study whether fluctuations in NVIX encode in- 

formation about equity risk premia. 

We begin by focusing on the postwar period commonly 

studied in the literature for which high-quality stock mar- 

ket data is available. We find strong evidence that times of 

greater investor uncertainty are followed by times of above 

average stock market returns. A one standard deviation in- 

crease in NVIX predicts annualized excess returns higher 

by 3.3 percentage points over the next year and 2.9 per- 

centage points annually over the next two years. 

We dig deeper into the nature of the uncertainty cap- 

tured by NVIX and find three pieces of evidence that 

these return predictability results are driven by variation 

in investors’ concerns regarding rare disasters as in Gabaix 

(2012) , Wachter (2013) , and Gourio (2008, 2012) . First, 

we find that the predictive power of NVIX is orthogonal 

to risk measures based on contemporaneous or forward- 

looking measures of stock market volatility. Second, we 

use alternative option-based measures, which are more 

focused on left-tail risk, to estimate their news-based 

counterparts. Our news-based extensions of the variance 

premium ( Bollerslev, Tauchen, and Zhou, 2009 ), the model- 

free left-tail risk measure of Bollerslev and Todorov (2011) , 
2 We analyze word-choice stability and measurement error in 

Section 2.3 . One could improve on this out-of-sample fit using financial 

variables (e.g., past volatility, default spreads, etc.) at the cost of los- 

ing the interpretability of the text-based index, which is central to our 

analysis. 
and implied volatility slope give similar predictability 

results. 

Interpretability, a key feature of the text-based ap- 

proach, enables us to investigate what type of news drives 

the ability of NVIX to predict returns. We decompose the 

text into five categories plausibly related (to a varying de- 

gree) to disaster concerns: War, Financial Intermediation, 

Government, Stock Markets, and Natural Disasters. We find 

that a large part of the variation in risk premia is related 

to wars (53%) and government (27%). A substantial part of 

the time-series variation in risk premia NVIX identifies is 

driven by concerns tightly related to the type of events 

discussed in the rare disasters literature ( Barro, 2006; Ri- 

etz, 1988 ). We find that government-related concerns are 

associated with redistribution risk, as our measure traces 

remarkably well tax policy changes in the US. Interest- 

ingly, even though uncertainty regarding the stock mar- 

ket itself–an NVIX component highly correlated with real- 

ized volatility–drives a substantial part of the variation in 

NVIX, this variation is not priced. By contrast, while con- 

cerns related to wars or government policy do not drive 

most of the variation in news implied volatility, they do 

drive most of its priced variation. These results suggest 

that time-varying disaster risk is priced in the postwar US 

stock market. 

Our paper is the first to extract information about 

aggregate uncertainty from news coverage using ma- 

chine learning techniques. Other recent work uses a more 

human-centric approach to extract such information. Lead- 

ing examples are the economic policy uncertainty index 

of Baker, Bloom, and Davis (2013) and the word list-based 

measures of Loughran and McDonald (2011) . We find that 

NVIX is unique in its ability to relate text with variation in 

aggregate risk premia. 

We then extend our analysis to include the earlier 

and turbulent 1896–1944 period to directly test whether 

NVIX predicts economic disasters. According to the the- 

ory, a variable that measures disaster concerns should fore- 

cast not only returns but also disasters. We develop a 

Bayesian framework based on Nakamura, Steinsson, Barro, 

and Ursúa (2013) to estimate the exact timing of disas- 

ters. The estimated posterior probability goes to one dur- 

ing three clear and distinct disaster periods, all between 

the two major world wars. It also identifies several peri- 

ods of near misses, when the posterior probability is be- 

low one but increases sharply, such as the 2008 finan- 

cial crisis. Consistent with the notion that NVIX encodes 

disaster concerns, NVIX predicts innovations in this poste- 

rior probability. A one standard deviation increase in NVIX 

predicts a 2.5 percentage points higher probability of a 

disaster over the next year. These results are robust to 

the inclusion of several controls for contemporaneous and 

forward-looking measures of stock market variance. Fur- 

thermore, the relation between NVIX and future returns 

is strikingly similar to our postwar estimates, once we ad- 

just the estimation for disasters that realized in the prewar 

sample. 

Our paper fits in a large literature that studies asset 

pricing consequences of large and rare economic disasters. 

At least since Rietz (1988) , financial economists have been 

concerned about the pricing consequences of large events 
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3 Sample size is especially important for studying rare events. An alter- 

native approach to our long time series is to study a large cross section 

of countries (e.g., Gao and Song, 2013 ). 
that happened not to occur in US data. Brown, Goetzmann,

and Ross (1995) argues that the ability to measure the eq-

uity premium in the US stock market using such a long

sample suggests that its history is special. Barro (2006) and

subsequently ( Barro, 2009; Barro and Ursua, 2008;

Nakamura, Steinsson, Barro, and Ursúa, 2013 ) show that

calibrations consistent with 20th century world history

can make quantitative sense of equity premium point es-

timates in the empirical literature. Gabaix (2012) , Wachter

(2013) , and Gourio (2008, 2012) further show that calibra-

tions of a time-varying rare disaster risk model can explain

the amount of time variation in the data. 

A major challenge of this literature is whether those

calibrations are reasonable. As Gourio (2008) puts it: "This

crucial question is hard to answer, since the success of

this calibration is solely driven by the large and persis-

tent variation is the disaster probability, which is unob-

servable.” We bring new data to bear on this question.

We find that the overall variation in disaster probabili-

ties used in calibrations such as Wachter (2013) line up

well with our estimates. Our estimates, however, suggest

substantially lower persistence than previously calibrated

by Wachter (2013) and Gourio (2008, 2012) . Moreover, we

estimate that a 1 percentage point increase in the an-

nual probability of a disaster increases risk premia by 1.16

percentage points. This effect on risk premia is remark-

ably close to the risk premia disaster sensitivity produced

by Wachter (2013) , in which disaster magnitudes are cali-

brated to match the distribution of disasters in the Barro

and Ursua (2008) cross-country data. This evidence sug-

gests that the time variation in disaster concerns measured

by NVIX regards disasters of the same magnitude as stud-

ied in the rare disasters literature. 

One motivation for our paper is the empirical fact

that estimating aggregate risk-return trade-offs is a data-

intensive procedure. Lundblad (2007) shows that the short

samples used in the literature is the reason that research

on the classic variance-expected return trade-off had been

inconclusive. Testing the particular form of risk-return

trade-off predicted by the time-varying disaster risk hy-

pothesis is more challenging because plausible measures of

disaster risk are available for no more than two decades,

and because disasters are rare. 

A large and fruitful literature exploits the information

embedded in option markets to learn about the structure

of the economy. Drechsler (2013) proposes a theory in

which the VIX has information about degree of ambiguity

aversion among investors. Drechsler and Yaron (2011) in-

terpret it as a forward-looking measure of risk. Bollerslev

and Todorov (2011) use a model-free approach to extract

from option prices a measure of the risk-neutral distribu-

tion of jump sizes in the Standard & Poor’s (S&P) 500 in-

dex. Bates (2012) shows that time-changed Lévy processes

capture well stochastic volatility and substantial outliers in

US stock market returns. Kelly and Jiang (2014) estimate a

tail risk measure from a 1963–2010 cross section of returns

and find it is highly correlated with options-based tail risk

measures. Backus, Chernov, and Martin (2011) present an

important challenge to the idea that the overpricing of

out-of-the-money put options can be explained by static

rare disaster risk models. Seo and Wachter (2013) show,
however, that this apparent inconsistency can be resolved

in a model with time-varying disaster risk. 

Our paper connects information embedded in VIX

with macroeconomic disasters by extending it back a

century and by using cross-equation restrictions between

disaster and return predictability regressions to estimate

disaster probability variance and persistence. Importantly,

by decomposing NVIX into word categories, we add to

this literature interpretable measures of distinct disaster

concerns and gain novel insights about the origins of risk

premia variation. 3 

Broadly, our paper contributes to a growing body of

work that applies text-based analysis to fundamental eco-

nomic questions. Hoberg and Phillips (2010a, b) use the

similarity of company descriptions to determine compet-

itive relations. Tetlock (2007) shows that the fractions of

positive and negative words in certain financial columns

predict subsequent daily returns on the Dow Jones

Industrial Average, and García (2013) shows that this

predictability is concentrated in recessions. These effects

mostly reverse quickly, which is more consistent with a

behavioral investor sentiment explanation than a rational

compensation for risk story. By contrast, we examine lower

(monthly) frequencies and find strong return and disas-

ter predictability consistent with a disaster risk premium

by funneling front-page appearances of all words through

a first-stage text regression to predict economically inter-

pretable VIX. The support vector regression we employ of-

fers substantial benefits over the more common approach

of classifying words according to tone (e.g., Loughran and

McDonald, 2011 ). It has been used successfully by Kogan,

Routledge, Sagi, and Smith (2010) to predict firm-specific

volatility from 10-K filings. 

The paper proceeds as follows. Section 2 describes

the data and methodology used to construct NVIX.

Section 3 tests the hypothesis that time variation in un-

certainty is an important driver of variation in expected

returns in postwar US data, reports our main results, and

identifies time-varying disaster concerns as a likely ex-

planation. Section 4 uncovers which concerns drive risk

premia. Section 5 extends our analysis back to 1896 to

directly test whether NVIX predicts economic disasters.

Section 6 concludes. 

2. Data and methodology 

We begin by describing our unique news data set and

how we use it to construct news-based measures of op-

tion implied volatility. We then describe the standard asset

pricing data we rely on to investigate the hypothesis that

disaster concerns are priced in the US stock market. 

We assume throughout that the choice of words by the

business press provides a good and stable reflection of the

concerns of the average investor. This assumption is nat-

ural and consistent with a model of a news firm that ob-

serves real-world events and then chooses what to empha-

size in its report, with the goal of building its reputation.
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Gentzkow and Shapiro (2006) create a model along these 

lines and present a variety of empirical evidence consistent 

with the model’s predictions. The idea that news media re- 

flect the interests of readers is suggested in Tetlock (2007) , 

empirically supported by Manela (2011) , and used for esti- 

mation of the value of information in Manela (2014) . 

2.1. News implied volatility (NVIX) 

Our news data set includes the title and abstract of all 

front-page articles of the Wall Street Journal from July 1889 

to December 2009. 4 We focus on front-page titles and ab- 

stracts to make the data collection feasible. Furthermore, 

these are manually edited and corrected following optical 

character recognition, which improves their earlier sample 

reliability. We omit titles that appear daily. 5 Titles and ab- 

stracts are separately broken into one- and two-word n- 

grams using a standard text analysis package that replaces 

highly frequent words (stopwords) with an underscore and 

removes n-grams containing digits. 6 

We combine the news data with our estimation target, 

the implied volatility indices VIX and VXO reported by the 

Chicago Board Options Exchange (CBOE). We use the older 

VXO implied volatility index that is available since 1986 in- 

stead of VIX that is available only since 1990 because it 

grants us more data and the two indices are 0.99 corre- 

lated at the monthly frequency. 

We break the sample into three subsamples. The train 

subsample, 1996 to 2009, is used to estimate the depen- 

dency between news data and implied volatility. The test 

subsample, 1986 to 1995, is used for out-of-sample tests 

of model fit. The predict subsample includes all earlier ob- 

servations for which VIX is not available. 7 

We aggregate n-gram counts to the monthly frequency 

to get a relatively large body of text for each observation. 

Because persistent changes exist over our sample in the 

number of words per article and the number of articles 

per day, we normalize n-gram counts by the total number 
4 Our data is available at http://apps.olin.wustl.edu/faculty/manela 
5 We omit the following titles, keeping their abstracts when available: 

“business and finance”, “world wide”, “what’s news”, “table of contents”, 

“masthead”, “other”, “no title”, and “financial diary”. 
6 For example, the sentence “The Olympics Are Coming” results in one- 

grams “olympics” and “coming” and two-grams “_ olympics”, “olympics 

_”, and “_ coming.”. We use ShingleAnalyzer and StandardAnalyzer of the 

open-source Apache Lucene Core project to process the raw text into n- 

grams. We experiment with stemming and considering different degree 

n-grams and find practically identical results, but because this is the pro- 

cedure we first used, we report its results throughout to get meaningful 

out-of-sample tests. 
7 A potential concern is that because the train sampleperiod is chrono- 

logically after the predict subsample, we are using new information, un- 

available to those who lived during the predict subsample, to predict fu- 

ture returns. While theoretically possible, we find this concern empiri- 

cally implausible because the way we extract information from news is 

indirect, counting n-gram frequencies. For this mechanism to work, mod- 

ern newspaper coverage of looming potential disasters would have to 

use fewer words that describe old disasters. By contrast, suppose modern 

journalists now know the stock market crash of 1929 was a precursor for 

the Great Depression. As a result, they give more attention to the stock 

market and the word “stock” gets a higher frequency conditional on the 

disaster probability in our train sample than in earlier times. Such a shift 

would cause its regression coefficient to underestimate the importance of 

the word in earlier times. Such measurement error works against us find- 

ing return and disaster predictability. 
of n-grams each month. We omit those n-grams appearing 

less than three times in the entire sample. Each month of 

text is therefore represented by x t , a K = 468 , 091 vector

of n-gram frequencies, i.e., 

x t,i = 

appearances of n-gram i in month t 

total n-grams in month t 
. (1) 

We use n-gram frequencies to predict VIX v t with a linear 

regression model 

v t = w 0 + w · x t + υt t = 1 , . . . , T , (2)

where w is a K vector of regression coefficients. Clearly 

w cannot be estimated reliably using least squares with a 

training time series of T train = 168 observations. 

We overcome this problem using support vector re- 

gression, an estimation procedure shown to perform well 

for short samples with an extremely large feature space 

K . 8 While a full treatment of SVR is beyond the scope of 

this paper, we wish to give an intuitive glimpse into this 

method and the structure that it implicitly imposes on the 

data. SVR minimizes the following objective: 

H ( w , w 0 ) = 

∑ 

t ∈ t rain 

g ε ( v t − w 0 − w · x t ) + c ( w · w ) , (3) 

where g ε ( e ) = max { 0 , | e | − ε} is an ε-insensitive error 

measure, ignoring errors of size less than ε. The minimiz- 

ing coefficients vector w is a weighted average of regres- 

sors 

ˆ w SV R = 

∑ 

t ∈ t rain 

(
ˆ α∗

t − ˆ αt 

)
x t , (4) 

where only some of the T train observations’ (dual) weights 

αt and α∗
t are nonzero. 9 

SVR works by carefully selecting a relatively small num- 

ber of observations called support vectors and ignoring the 

rest. The trick is that the restricted form (4) does not con- 

sider each of the K linear subspaces separately. By impos- 

ing this structure, we reduce an overdetermined problem 

of finding K � T coefficients to a feasible linear-quadratic 

optimization problem with a relatively small number of 

parameters (picking the T train dual weights αt ). The cost is 

that SVR cannot adapt itself to concentrate on subspaces of 

x t ( Hastie, Tibshirani, and Friedman, 2009 ). For example, if 

the word “peace” is important for VIX prediction indepen- 

dently of other words that appear frequently on the same 

low VIX months (e.g. “Tolstoy”), SVR would assign similar 

weight to both. Ultimately, success or failure of SVR must 

be evaluated by out-of-sample fit. 

Fig. 1 shows estimation results. Looking at the train 

subsample, the most noticeable observations are the 
8 See ( Kogan, Levin, Routledge, Sagi, and Smith (2009) ; Kogan, Rout- 

ledge, Sagi, and Smith (2010) ) for an application in finance or Vapnik 

(20 0 0) for a thorough discussion of theory and evidence. We discuss al- 

ternative approaches in Section 3.2 . 
9 SVR estimation requires us to choose two hyper-parameters that 

control the trade-off between in-sample and out-of-sample fit (the ε- 

insensitive zone and regularization parameter c ). Instead of making these 

choices ourselves, we use the procedure suggested by Cherkassky and Ma 

(2004) which relies only on the train subsample. We first estimate us- 

ing k-Nearest Neighbor with k = 5 . We then calculate c CM2004 = 50 . 74 and 

εCM2004 = 3 . 49 . We numerically estimate w by applying with these pa- 

rameters the widely used SVM 

light package (available at http://svmlight. 

joachims.org/) to our data. 

http://apps.olin.wustl.edu/faculty/manela
http://svmlight.joachims.org/)
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Fig. 1. News implied volatility 1890–2009. Solid line is end-of-month Chicago Board Options Exchange volatility implied by options VIX t . Dots are news 

implied volatility (NVIX), ̂ V IX t = w 0 + w · x t , where x t, i are appearances of n-gram i in month t scaled by total month t n-grams and w is estimated 

with a support vector regression. The train subsample, 1996 to 2009, is used to estimate the dependency between news data and implied volatility. The 

test subsample, 1986–1995, is used for out-of-sample tests of model fit. The predict subsample includes all earlier observations for which options data 

and, hence, VIX are not available. Light-colored triangles indicate a nonparametric bootstrap 95% confidence interval around ̂ V IX using one thousand 

randomizations. These show the sensitivity of the predicted values to randomizations of the train subsample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Out-of-sample implied volatility (VIX) prediction. 

Reported are out-of-sample model fit statistics using the test subsam- 

ple. Panel A reports variance of the predicted value News Implied Volatil- 

ity (NVIX) as a fraction of actual VIX variance and the root mean square 

error. Panel B reports a univariate Ordinary Least Squares (OLS) regression 

of actual VIX on NVIX. Robust standard errors are in brackets. 

Panel A: Out-of-sample fit 

R 2 ( test ) = 1 − Var 
(
v t − ˆ v t 

)
/Var ( v t ) 18.53 

RMSE ( test ) = 

√ 

1 
T test 

∑ 

t∈ test 

(
v t − ˆ v t 

)2 
7 .48 

Observations 119 

Panel B: Out-of-sample OLS regression v t = a + b ̂ v t + e t , t ∈ test 

a 0 .17 

[4 .37] 

b 0 .82 

[0 .20] 

R 2 19 .46 

 

 

 

 

 

 

Long-Term Capital Management (LTCM) crisis in August

1998, the US making clear in September 2002 that an Iraq

invasion was imminent, the abnormally low VIX from 2005

to 2007, and the financial crisis in 2008. In-sample fit is

good, with an R 2 ( train ) = 91% . The tight confidence inter-

val around 

ˆ v t suggests that the estimation method is not

sensitive to randomizations (with replacement) of the train

subsample. This gives us confidence that the methodology

uncovers a fairly stable mapping between word frequen-

cies and VIX, but with such a large feature space, one must

worry about over-fitting. 

However, as reported in Table 1 , the model’s out-of-

sample fit over the test subsample is good, with RMSE ( test )

of 7.48 percentage points and R 2 ( test ) of 19%. In addition

to these statistics, we report results from a regression of

test subsample actual VIX values on news-based values. We

find that NVIX is a statistically powerful predictor of actual

VIX. The coefficient on 

ˆ v t is statistically greater than zero

( t = 4 . 01 ) and no different from one ( t = −0 . 88 ), which

supports our use of NVIX to extend VIX to the longer

sample. 

2.2. NVIX is a reasonable proxy for uncertainty 

NVIX captures well the fears of the average investor

over this long history. Noteworthy peaks in NVIX include
the stock market crash of October and November 1929

and other tremulous periods that we annotate in Fig. 2 .

Stock market crashes, wars and financial crises seem to

play an important role in shaping NVIX. Absent, however,

is the burst of the tech bubble in March 20 0 0. Thus, not

all market crashes indicate rising concerns about economic
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Fig. 2. News implied volatility (NVIX) peaks by decade. We describe NVIX peak months each decade by reading the front page articles of the Wall Street 

Journal and cross-referencing with secondary sources when needed. Many of the market crashes are described in Mishkin and White (2002) . See also 

Noyes (1909) and Shiller and Feltus (1989) . 
disasters. Our model produces a spike in October 1987 

when the stock market crashed and a peak in August 1990 

when Iraq invaded Kuwait and ignited the first Gulf War. 

This exercise gives us confidence in using the model to 

predict VIX over the entire predict subsample, when op- 

tions were hardly traded and actual VIX is unavailable. 

We find it plausible that spikes in uncertainty perceived 

by the average investor coincide with stock market crashes, 

world wars, and financial crises. Because these are exactly 

the times when NVIX spikes due to each of these concerns, 

we find it is a plausible proxy for investor uncertainty. 

Perhaps surprising is that NVIX is relatively smooth 

during the Great Depression, when NVIX increases from 

about 25% to 30%, peaking at 40% on October 1929. How- 

ever, like options-implied volatility, NVIX is a forward- 

looking measure of uncertainty and is naturally smoother 

than backward-looking realized volatility, which mechan- 

ically spikes during disaster realizations. Alternatively, 

this could happen because measurement error attenuates 

NVIX. 

2.3. Word-choice stability and measurement error 

We assume throughout that the choice of words by 

the business press provides a good and stable reflection of 

the concerns of the average investor. Otherwise, the type 

of machine learning techniques we use to interpret text 

would produce noisy estimates of implied volatility. Such 
measurement error would bias our predictability results 

toward zero. 

One concern is that the issues worrying investors 

change over time. For example, the Dust Bowl was a salient 

feature of the 1930s, with severe dust storms, drought, and 

agricultural damage. Because this type of event is unlikely 

to concern modern-day investors enough to make front- 

page news during our training sample, we could measure 

with error the perception of uncertainty that prevailed 

during the thirties. Technically, to estimate reliably the re- 

lation between specific sources of aggregate uncertainty 

and word usage of the business press, we require variation 

in both during our subsample. We choose to estimate the 

empirical model on the recent sample, and test on the ear- 

lier one, so we can get a sense of out-of-sample fit when 

we go even further back in time. This choice is not innocu- 

ous. If we were to reverse the order and estimate on the 

earlier sample, our text regression would miss important 

variation due to the financial crisis of 2008 and instead fo- 

cus on the stock market crash of 1987. 

A related concern is that the meaning of certain words 

or phrases used by the business press has changed con- 

siderably over our long sample. For example, the mapping 

from the two-gram “Japanese navy” to investor concerns 

about disaster risks in the 1940s is likely different than 

in the 20 0 0s. Ideally, we would consider only more com- 

mon phrases with a stable meaning, such as “war”. The 

techniques we use are, however, designed to avoid such 
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Table 2 

Out-of-sample realized volatility prediction using news. 

Reported are model fit statistics repeating the estimation procedure over the same train subsample as before, only 

replacing implied volatility (VIX) with realized volatility as the dependent variable of the Support Vector Regression 

(SVR) Eq. (2) . The train subsample, 1996–2009, is used to estimate the dependency between monthly news data and 

realized volatility. The test subsample, 1986 to 1995, is used for out-of-sample tests of model fit. The predict subsample 

includes all earlier observations for which options data and, hence, VIX are not available. RMSE SVR is root mean square 

error of the SVR. R 2 SVR is one less the prediction error’s variance as a fraction of actual realized volatility’s variance. 

RMSE Reg and R 2 Reg are estimated from a subsequent univariate Ordinary Least Squares (OLS) regression of actual 

realized volatility on realized volatility implied by news. 

Subsample RMSE SVR R 2 SVR RMSE Reg R 2 Reg Correlation Observations 

Train 3.38 90.69 2.62 92.70 96.28 168 

Test 9.61 20.24 9.08 20.35 45.11 119 

Predict 10.68 13.58 8.50 15.99 39.98 1150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overfitting pitfalls and proved successful in related settings

( Antweiler and Frank, 2004; Kogan, Routledge, Sagi, and

Smith, 2010 ). 

Nonetheless, we wish to quantify how measurement er-

ror changes when moving from the test subsample to the

predict subsample, but VIX is unavailable during this earlier

period. Instead, we repeat the same estimation procedure

over the same train subsample as before but replace VIX

with realized volatility as the dependent variable of the

SVR in Eq. (2) . 

We find that our predictive ability over the long sam-

ple is stable. Table 2 reports several different measures

of realized volatility fit to news data over the three sub-

samples. The most natural measure of fit is root mean

square error of the text regression ( RMSE SVR ), according to

which measurement error in the predict subsample is only

slightly higher thanin the test subsample. RMSE increases

from 9.6% to 10.7% annualized volatility. These results sug-

gest only a modest increase in measurement error of NVIX

as we extend VIX further back to times the index did not

exist. 

2.4. Asset pricing data 

We use two different data sources for our stock mar-

ket data. We use the Center for Research in Security Prices

(CRSP) total market portfolio for the period from 1926 to

2009 and the Dow Jones index from Global Financial Data,

available monthly from July 1896 to 1926. We refer to this

series as “market returns”. Results are similar if we use the

Dow Jones index throughout. We also use Robert Shiller’s

time series of aggregate S&P 500 earnings from his web-

site. We chose these data to run our predictability tests

because this index is representative of the overall econ-

omy and goes back a long way. We use daily returns on

the CRSP total market portfolio and the Dow Jones index

to construct proxies for realized volatility, which we use

to explore alternative explanations. To compute excess re-

turns we use the one-month T-bill rate to measure the

risk-free rate and, when it is unavailable we use yields on

ten year US government bonds from Global Financial Data.

We use the difference between Moody’s Baa and Aaa yields

to measure credit spreads. This data is available only af-

ter 1919. We use the VXO and VIX indices from the CBOE.

They are implied volatility indices derived from a basket
of option prices on the S&P 500 (VIX) and S&P 100 (VXO)

indices. The VIX time series starts in January 1990 and

VXO starts in January 1986. The left-tail measure (LT) of

Bollerslev and Todorov (2011) was kindly provided to us

by the authors. We use OptionMetrics data to construct a

measure of the slope of the implied volatility curve for the

S&P 500 index. 

3. Postwar compensation for risks measured by NVIX 

In this section, we test the hypothesis that time varia-

tion in uncertainty is an important driver of variation in

expected returns on US equity over the post-World War

II (WWII), 1945 to 2009, sample. During this period, com-

monly studied in the literature, the US experienced no eco-

nomic disasters of the magnitude of a Great Depression or

a world war. High-quality stock market data is available for

this period. We start with our main findings that NVIX pre-

dicts returns. We then show that stochastic volatility is not

behind this result and that our results survive the inclusion

of several predictors of stock market returns and alterna-

tive text-based measures of uncertainty. Finally, we extend

our methodology to other alternative measures of tail risk

and find similar results. 

3.1. NVIX predicts returns 

Asset pricing models with time-varying risk premia

predict that times when risk is relatively high would be

followed by above average returns on the aggregate mar-

ket portfolio. For example, the dynamic risk-return trade-

off of Merton (1973) predicts a linear relation between

the conditional expected excess return on the market and

its conditional variance, as well as its conditional covari-

ance with other priced risk factors. The more recent time-

varying rare disaster models predict a linear relation be-

tween expected excess returns and the variance premium,

which is linear in the time-varying probability of a rare

disaster (e.g., Gabaix, 2012 ). Therefore, our main tests try

to explain future excess returns on the market portfolio

at various horizons with lagged forward-looking measures

of risk as measured by NVIX squared. We place our mea-

sure in variance space because, in all the above-mentioned

models, risk premia are linear in variances as opposed



144 A. Manela, A. Moreira / Journal of Financial Economics 123 (2017) 137–162 

Table 3 

News implied volatility predicts postwar stock market returns. 

Reported are monthly return predictability regressions based on news implied volatility (NVIX), Standard & Poor’s (S&P) 100 options implied volatility 

(VXO), and S&P 500 options implied volatility (VIX). The dependent variables are annualized log excess returns on the market index. Each row and each 

column represents a different regression. The first column examines the entire postwar period, and the second focuses on a sample that was not used 

in fitting NVIX to options implied volatility. The third and fourth columns report results for the sample period for which VXO and VIX are available. t NW 

are Newey and West corrected t-statistics with number of lags and leads equal to the size of the return forecasting window. t GR t-statistics correct for 

the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 1% significance levels, respectively. 

r e t → t + τ = β0 + β1 X 
2 
t−1 + εt+ τ

X : NVIX VXO VIX 

1945–2009 1945–1995 1986–2009 1990–2009 1986–2009 1990–2009 

τ (1) (2) (3) (4) (5) (6) 

1 β1 0 .15 0 .37 ∗∗ 0 .10 0 .09 0 .12 0 .12 

t NW [0 .99] [2 .21] [0 .58] [0 .53] [1 .05] [0 .79] 

t GR [0 .98] [1 .84] [0 .58] [0 .53] 

R 2 0 .35 0 .74 0 .28 0 .30 0 .82 0 .68 

3 β1 0 .12 0 .45 ∗∗∗ 0 .04 0 .03 0 .08 0 .08 

t NW [0 .81] [3 .62] [0 .25] [0 .20] [0 .79] [0 .58] 

t GR [0 .80] [2 .45] [0 .25] [0 .20] 

R 2 0 .56 2 .96 0 .11 0 .09 0 .99 0 .78 

6 β1 0 .18 ∗∗ 0 .43 ∗∗∗ 0 .11 0 .10 0 .09 ∗ 0 .13 ∗∗

t NW [2 .48] [3 .71] [1 .42] [1 .35] [1 .87] [1 .97] 

t GR [2 .41] [2 .48] [1 .42] [1 .35] 

R 2 2 .37 4 .81 1 .91 2 .00 2 .49 3 .72 

12 β1 0 .16 ∗∗∗ 0 .31 ∗∗∗ 0 .10 ∗ 0 .11 ∗ 0 .08 ∗ 0 .11 ∗

t NW [3 .21] [2 .77] [1 .65] [1 .93] [1 .67] [1 .94] 

t GR [3 .05] [2 .13] [1 .65] [1 .92] 

R 2 3 .31 4 .69 3 .01 3 .97 3 .28 4 .46 

24 β1 0 .14 ∗∗∗ 0 .21 ∗∗ 0 .11 ∗∗ 0 .11 ∗∗ 0 .06 0 .08 

t NW [3 .58] [2 .16] [2 .18] [2 .04] [1 .44] [1 .36] 

t GR [3 .37] [1 .81] [2 .17] [2 .03] 

R 2 5 .02 4 .25 6 .25 5 .99 4 .18 4 .06 

Obs. 779 611 287 239 287 239 

 

to standard deviations. 10 To alleviate any concerns about 

news-based measures that rely on weekend news cover- 

age not yet priced in the stock market, we skip a month 

to err on the side of caution. Throughout the paper, we 

report both ( Newey and West, 1987 ) standard errors with 

the same number of lags as the forecasting window and 

bootstrapped standard errors based on ( Murphy and Topel, 

2002 ) that further account for the fact that our main re- 

gressor NVIX is estimated in a first stage. For a complete 

discussion of standard errors, see Appendix Section A.2 . 

The last two columns of Table 3 show that, in the short 

sample for which option prices are available, the ability 

of VIX to predict returns is statistically rather weak. In 

the sample for which VIX is available, the implied volatil- 

ity index predicts excess returns in the six months to 12 

months horizons. If we consider a slightly longer sample 

for which the VXO implied volatility index on the S&P 100 

is available, the evidence for return predictability becomes 

weaker. Would these results change if we had a longer 

sample of such forward-looking measures of uncertainty? 

While we do not have new options data to bring to 

bear, we use NVIX to extrapolate these options-based mea- 

sures of uncertainty back in time. NVIX largely inherits the 

behavior of VIX and VXO in sample periods when both are 

available. Point estimates and standard errors are similar, 
10 The results are very similar in terms of statistical significance and 

economic magnitude if we use NVIX instead. 
especially for the VIX sample. This is hardly surprising, be- 

cause NVIX was constructed to fit these implied volatil- 

ity indices, though we use only post-1995 data for NVIX 

estimation. 

The main advantage of using NVIX, however, is the abil- 

ity to consider much longer samples. The first two columns 

of Table 3 report our main results for two alternative ex- 

tended sample periods. In the first column, return pre- 

dictability for the entire postwar period going from 1945 

to 2009 is well estimated with larger point estimates rel- 

ative to the VIX sample. From six months to 24 months 

horizons, the coefficients are statistically significant at the 

1% to 5% level, unlike for the VIX sample. The second col- 

umn reports results for the sample period for which we 

did not use any in-sample option price data. Out-of-sample 

estimates are even larger and statistically significant at one 

month to 24 months horizons. 

We interpret the extended sample results as strong ev- 

idence for the joint hypothesis that NVIX measures in- 

vestors’ uncertainty and that time variation in uncertainty 

drives expected returns. The coefficient estimates imply 

substantial predictability with a one standard deviation in- 

crease in NVIX 

2 leading to σNV IX 2 × β1 = 20 . 5 × 0 . 16 = 3 . 3%

higher excess returns in the following year. Unsurprisingly, 

r-squares are small, and attempts to exploit this relation 

carry large risks even for a long-run investor. Annual- 

ized forecasting coefficients are stable across forecasting 

horizons. 
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Table 4 

Alternative text-based approaches. 

Return predictability regressions based on our constructed news implied volatility (NVIX) series, controlling for the Economic Policy Uncertainty mea- 

sure (EPU) of Baker, Bloom, and Davis (2013) , and the different language tone word lists. We report both tf (proportional weights) and tf.idf weights of 

words appearing in the Loughran and McDonald (2011) Negative, Positive, Uncertainty, Modal Strong, and Modal Weak word lists. All columns feature 

NVIX as a predictor, and each column has as a control a different measure. The dependent variables are annualized log excess returns on the market 

index. The sample period is 1945 to 2009. t NW are Newey and West corrected t-statistics with number of lags and leads equal to the size of the re- 

turn forecasting window. t GR t-statistics correct for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 1% significance levels, 

respectively. 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + β2 X t−1 + εt+ τ

Controls: None EPU Negative Uncertainty Positive Modal Strong Modal Weak 

tf tf.idf tf tf.idf tf tf.idf tf tf.idf tf tf.idf 

τ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

1 β1 0 .15 0 .13 0 .14 0 .15 0 .14 0 .15 0 .14 0 .14 0 .16 0 .15 0 .13 0 .15 

t NW [0 .99] [0 .86] [0 .93] [0 .98] [0 .95] [0 .98] [0 .96] [0 .94] [1 .03] [0 .99] [0 .89] [0 .98] 

t GR [0 .98] [0 .86] [0 .92] [0 .98] [0 .94] [0 .98] [0 .95] [0 .94] [1 .03] [0 .99] [0 .89] [0 .97] 

R 2 0 .35 0 .44 0 .44 0 .35 0 .85 0 .35 0 .40 0 .40 0 .43 0 .39 0 .91 0 .35 

3 β1 0 .12 0 .11 0 .11 0 .12 0 .11 0 .12 0 .12 0 .11 0 .11 0 .12 0 .11 0 .12 

t NW [0 .81] [0 .79] [0 .76] [0 .80] [0 .78] [0 .80] [0 .81] [0 .79] [0 .80] [0 .80] [0 .76] [0 .80] 

t GR [0 .80] [0 .78] [0 .75] [0 .80] [0 .78] [0 .80] [0 .81] [0 .79] [0 .80] [0 .80] [0 .76] [0 .80] 

R 2 0 .56 0 .58 0 .67 0 .56 1 .10 0 .56 0 .56 0 .56 0 .56 0 .57 0 .91 0 .56 

6 β1 0 .18 ∗∗ 0 .19 ∗∗∗ 0 .18 ∗∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .18 ∗∗ 0 .17 ∗∗ 0 .18 ∗∗

t NW [2 .48] [2 .66] [2 .59] [2 .45] [2 .46] [2 .45] [2 .57] [2 .41] [2 .55] [2 .47] [2 .47] [2 .45] 

t GR [2 .41] [2 .55] [2 .52] [2 .38] [2 .39] [2 .38] [2 .50] [2 .34] [2 .47] [2 .40] [2 .40] [2 .38] 

R 2 2 .37 2 .43 2 .37 2 .37 2 .94 2 .37 2 .38 2 .37 2 .38 2 .41 2 .77 2 .38 

12 β1 0 .16 ∗∗∗ 0 .17 ∗∗∗ 0 .16 ∗∗∗ 0 .16 ∗∗∗ 0 .15 ∗∗∗ 0 .16 ∗∗∗ 0 .16 ∗∗∗ 0 .16 ∗∗∗ 0 .16 ∗∗∗ 0 .16 ∗∗∗ 0 .15 ∗∗∗ 0 .16 ∗∗∗

t NW [3 .21] [3 .41] [3 .18] [3 .14] [3 .22] [3 .13] [3 .30] [3 .04] [3 .29] [3 .21] [3 .20] [3 .11] 

t GR [3 .05] [3 .19] [3 .04] [2 .99] [3 .07] [2 .99] [3 .15] [2 .90] [3 .13] [3 .05] [3 .05] [2 .96] 

R 2 3 .31 3 .66 3 .31 3 .31 4 .43 3 .35 3 .32 3 .33 3 .32 3 .45 4 .13 3 .42 

24 β1 0 .14 ∗∗∗ 0 .16 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗ 0 .14 ∗∗∗

t NW [3 .58] [3 .50] [3 .01] [3 .65] [3 .60] [3 .64] [3 .50] [3 .63] [3 .49] [3 .64] [3 .53] [3 .67] 

t GR [3 .37] [3 .27] [2 .89] [3 .43] [3 .40] [3 .42] [3 .33] [3 .41] [3 .31] [3 .42] [3 .33] [3 .44] 

R 2 5 .02 5 .79 5 .03 5 .02 7 .04 5 .11 5 .46 5 .23 5 .55 5 .05 6 .23 5 .27 

Obs. 779 779 779 779 779 779 779 779 779 779 779 779 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 Examples of this approach can be found in Antweiler and Frank 

(20 04) , Tetlock (20 07) , Engelberg (20 08) , and Tetlock, Saar-Tsechansky, 

and Macskassy (2008) . 
3.2. Alternative text-based approaches 

We estimate the relation between news coverage,

volatility, and returns using support vector regression (2) .

SVR overcomes the main challenge, which is the large di-

mensionality of the feature space (number of unique n-

grams). Our approach lets the data speak without much

human interaction. Two alternative approaches have been

suggested by previous literature. 

One popular approach is to create a topic-specific com-

pound full-text search statement and tally the result-

ing number of articles normalized by a measure of nor-

mal word count. The result is a univariate time series

that can be used in a least squares regression. An ad-

vantage of this approach is that resulting articles are

highly likely to be related to the specific topic. How-

ever, this approach relies on the econometrician’s judg-

ment, unlike our approach, which relies on an objec-

tive measure of success (VIX). Because out-of-sample fit

is paramount in our paper, we find the text regres-

sion superior for our purposes. A leading example of

this approach is the news-based economic policy uncer-

tainty index (EPU) proposed in Baker, Bloom, and Davis

(2013) . In Column 2 of Table 4 we compare our measure

with their EPU measure. Comparing with the univariate

specification (Column 1), EPU does not increase the regres-

sion fit and the predictability coefficients on NVIX are vir-

tually unchanged. In unreported results, we find that EPU
does not predict returns even in a univariate specification.

Evidently, these measures capture distinct pieces of infor-

mation. While NVIX captures variation in uncertainty that

is priced by the aggregate stock market and relevant for

expected returns, EPU does not. 

A second approach classifies words into dictionaries or

word lists that share a common tone. One then totals all

occurrences of words in the text belonging to a particu-

lar word list, again normalized by a measure of normal

word count. 11 An advantage of this approach is that it re-

duces the feature space from the number of n-grams to

the number of word lists. One disadvantage is that words

within a list are equally weighted. Thus the words “war”

and “yawn” can count the same, even if the importance

of their appearance on the front page of a newspaper is

different. 

A recent contribution by Loughran and McDonald

(2011) develops a negative word list, along with five other

word lists, that reflect tone in financial text better than

the widely used Harvard Dictionary and relate them to

10-K filing returns. We applied the Loughran and Mc-

Donald (2011) methodology to our sample of articles. We

tried both tf (proportional weights) and tf.idf weights of

words appearing in their Negative, Positive, Uncertainty,
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Table 5 

Stochastic volatility does not explain the return predictability results. 

Return predictability regressions controlling for expected variance. The dependent variables are market annualized log excess returns, over the postwar 

1945–2009 period. Each row and each column represents a different regression. Rows show different forecasting horizons. EVAR is predicted variance 

using the following variables: Model 1 uses lagged variance, Model 2 uses three lags of realized variance, Model 3 adds price-to-earnings ratio to Model 

2, Model 4 adds NVIX 2 to Model 3, and Model 5 adds the credit spread to Model 4.The last row reports the percent R-squared from the variance 

predictability regression used to estimate EVAR. t NW are Newey and West corrected t-statistics with number of lags and leads equal to the size of the 

return forecasting window. t GR t-statistics correct for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 1% significance levels, 

respectively. 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + β2 EVAR t−1 + εt 

τ (1) (2) (3) (4) (5) 

1 β1 0 .20 0 .20 0 .22 0 .20 0 .25 

t NW [1 .48] [1 .30] [1 .43] [1 .49] [1 .46] 

t GR [1 .45] [1 .26] [1 .37] [1 .44] [1 .27] 

R 2 0 .49 0 .40 0 .45 0 .44 0 .43 

3 β1 0 .13 0 .15 0 .17 0 .16 0 .21 

t NW [0 .94] [1 .12] [1 .28] [1 .32] [1 .45] 

t GR [0 .93] [1 .10] [1 .25] [1 .29] [1 .27] 

R 2 0 .59 0 .61 0 .71 0 .69 0 .74 

6 β1 0 .18 ∗∗ 0 .21 ∗∗ 0 .23 ∗∗∗ 0 .22 ∗∗∗ 0 .27 ∗∗

t NW [2 .34] [2 .38] [2 .65] [2 .71] [2 .22] 

t GR [2 .21] [2 .14] [2 .35] [2 .46] [1 .70] 

R 2 2 .37 2 .45 2 .65 2 .57 2 .65 

12 β1 0 .17 ∗∗∗ 0 .18 ∗∗∗ 0 .21 ∗∗∗ 0 .20 ∗∗∗ 0 .26 ∗∗

t NW [3 .04] [2 .63] [2 .85] [2 .81] [2 .25] 

t GR [2 .78] [2 .33] [2 .49] [2 .53] [1 .71] 

R 2 3 .34 3 .46 3 .82 3 .82 4 .06 

24 β1 0 .15 ∗∗∗ 0 .17 ∗∗∗ 0 .19 ∗∗∗ 0 .21 ∗∗∗ 0 .31 ∗∗∗

t NW [3 .34] [2 .79] [2 .78] [2 .99] [2 .64] 

t GR [3 .00] [2 .43] [2 .45] [2 .66] [1 .87] 

R 2 5 .07 5 .34 6 .04 7 .19 8 .57 

Observations 779 778 778 778 778 

EVAR model R 2 9 .21 25 .53 25 .87 28 .22 31 .83 

 

Modal Strong, and Modal Weak word lists. Table 4 reports 

return predictability regressions on the scores of each 

word list together with NVIX. 12 Most lists add no predic- 

tive power. Only Uncertainty and Modal Weak using pro- 

portional weights improve on the univariate NVIX spec- 

ification. The NVIX regression coefficient barely changes 

across specifications. We conclude that SVR is better for 

our purposes given our data. 

3.3. Stochastic volatility does not explain these results 

We next dig deeper into the nature of the priced un- 

certainty captured by NVIX. One potential explanation for 

the ability of NVIX to predict returns is that NVIX mea- 

sures variation in current stock market volatility ( Merton, 

1973 ). According to this hypothesis, NVIX predicts returns 

because investors demand higher expected returns during 

more volatile periods. 

We test this hypothesis using lagged realized variance 

as well as five alternati ve variance forecasting models, 

gradually adding more predictors, such as realized vari- 

ance lags, the price-to-earnings ratio, NVIX, and the credit 

spread. The last line of Table 5 compares the ability of 

the alternative variance forecasting models to predict fu- 

ture variance. 

Table 5 shows that the coefficient on NVIX is about 

the same and that standard errors either decrease or only 
12 The intermediate step of regressing VIX on the scores is unnecessary 

here because the predicted value of VIX would just be a constant multi- 

plying the raw word list score. 
slightly increase when we control for realized or expected 

variance. Its coefficient does not change even after we add 

NVIX to the variance forecasting model (Model 4). This 

establishes that NVIX embeds priced information that is 

largely orthogonal to any information NVIX or other stan- 

dard predictor variables contain regarding future volatility. 

In Appendix Section A.5 , we also find that the predictive 

power of NVIX is robust to the inclusion of previously sug- 

gested return predictors such as the price-to-earnings ratio 

and credit spreads. 

3.4. Alternative measures of uncertainty focused on tail risk 

In Table 6 , we replicate our analysis using alternative 

measures of uncertainty, which are more focused on left- 

tail risk, controlling for expected future variance. For each 

of these measures, we reproduce the methodology we ap- 

plied to VIX. The first column reproduces our main re- 

sults. In the second column is VIX premium ( = V IX 2 t −
E t [ V ar(R t+1 )]) , where E t [ V ar(R t+1 )] is constructed using

an AR(1) for realized variance ( Bollerslev, Tauchen, and 

Zhou, 2009 ). In the third column is the options-based and 

model-free LT measure of Bollerslev and Todorov (2011) . 

In the fourth column is the slope of the option implied 

volatility curve, constructed using 30-day options from Op- 
13 
tionMetrics. 

13 In Appendix Section A.1 we report raw correlations between these 

measures of tail risk. 
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Table 6 

Alternative measures of uncertainty focused on tail risk. 

This table replicates our main results of Table 3 for alternative tail risk 

measures, over the postwar 1945–2009 period. For each of these mea- 

sures, we reproduce the methodology we applied to implied volatility 

(VIX). The symbol ̂ X t denotes the text-based estimator of variable X t . 

The first column reproduces our main results. In the second column is 

VIX premium ( = V IX 2 t − E t [ Var(R t+1 )]) , where E t [ Var(R t+1 )] is constructed 

using an AR(1). In the third column is the left-tail measure (LT) from 

Bollerslev and Todorov (2011) . In the fourth column is the slope of op- 

tion implied volatility curve, constructed using the 30-day volatility curve 

from OptionMetrics. We use puts with delta of -0.5 and -0.8 to compute 

the slope. The variable EVAR t−1 is included in all columns to control for 

expected future variance using an AR(3) model (Model 2 of Table 5 ). t NW 

are Newey and West corrected t-statistics with number of lags and leads 

equal to the size of the return forecasting window. t GR t-statistics correct 

for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 

5%, and 1% significance levels, respectively. 

r e t → t + τ = β0 + β1 ̂
 X t−1 + β2 EVAR t−1 + εt+ τ

τ X : VIX 2 VIX premium LT Slope 

(1) (2) (3) (4) 

1 β1 0 .20 0 .43 ∗∗ 1 .87 125 .49 ∗

t NW [1 .30] [2 .56] [1 .55] [1 .85] 

t GR [1 .26] [1 .79] [1 .43] [1 .19] 

R 2 0 .40 1 .34 0 .47 0 .51 

3 β1 0 .15 0 .17 1 .51 95 .12 ∗

t NW [1 .12] [1 .36] [1 .32] [1 .71] 

t GR [1 .10] [1 .19] [1 .24] [1 .15] 

R 2 0 .61 0 .67 0 .82 0 .80 

6 β1 0 .21 ∗∗ 0 .17 ∗∗ 2 .11 ∗∗∗ 75 .39 ∗

t NW [2 .38] [2 .01] [3 .01] [1 .82] 

t GR [2 .14] [1 .56] [2 .34] [1 .19] 

R 2 2 .45 1 .59 3 .13 1 .39 

12 β1 0 .18 ∗∗∗ 0 .12 ∗ 1 .65 ∗∗∗ 54 .99 

t NW [2 .63] [1 .80] [2 .91] [1 .64] 

t GR [2 .33] [1 .46] [2 .29] [1 .13] 

R 2 3 .46 1 .71 3 .60 1 .57 

24 β1 0 .17 ∗∗∗ 0 .11 ∗∗ 1 .47 ∗∗∗ 53 .68 ∗∗

t NW [2 .79] [2 .18] [2 .73] [2 .24] 

t GR [2 .43] [1 .64] [2 .20] [1 .28] 

R 2 5 .34 2 .44 5 .21 2 .41 

Observations 778 778 778 778 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Top variance driving n-grams. 

We report the fraction of news implied volatility (NVIX) variance h ( i ) 

that each n-gram drives over the predict subsample as defined in Eq. (5) 

and the regression coefficient w i from Eq. (2) , for the top 20 n-grams. 

n-gram Variance share, percent Weight, percent 

Stock 36 .61 0 .09 

Market 7 .03 0 .06 

Stocks 6 .93 0 .07 

War 5 .57 0 .03 

U.S 3 .66 0 .06 

Tax 2 .10 0 .04 

Special 1 .85 0 .02 

Washington 1 .61 0 .01 

Banks 1 .56 0 .06 

Financial 1 .41 0 .10 

Treasury 1 .40 0 .05 

Gold 1 .38 −0.04 

Oil 1 .34 −0.03 

_ U.S 0 .85 0 .04 

Bonds 0 .82 0 .04 

House 0 .80 0 .05 

_ Stock 0 .78 0 .03 

Billion 0 .69 0 .05 

Economic 0 .67 0 .05 

Like 0 .51 −0.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 In general, V ar 
(

ˆ v t 
)

� = 

∑ 

V ar 
(

ˆ v t ( j ) 
)

due to covariance terms. 
These alternative measures of news implied uncertainty

yield similar predictability results. The direction of re-

turn predictability is consistent with the hypothesis that

the predictability is driven by time-varying disaster con-

cerns. When tail risk is high, as measured by any of the

four alternative measures, average returns are higher going

forward. 

All of these measures in one way or another take higher

values when options that pay off in bad states of the world

are relatively expensive. These options can be expensive

because investors’ attitudes toward these states take a turn

for the worse, as in the time-varying Knightian uncertainty

model of Drechsler (2013) , or because the objective proba-

bility that these states occur increases, as in time-varying

rare disaster models ( Gabaix, 2012; Gourio, 2008; 2012;

Wachter, 2013 ). In either case, NVIX appears to capture

concerns related to tail risk. 

4. Origins of uncertainty fluctuations 

In this section, we lever the text-based feature of our

uncertainty measure to gain novel insights into the origins
of uncertainty fluctuations. The results in Section 3 imply

that priced variation in NVIX is unrelated with standard

measures of stock market risk and likely to be related to

fluctuations in tail risk. Guided by this evidence, we de-

compose our uncertainty measure into five interpretable

categories meant to capture different types of shocks: Gov-

ernment, Financial Intermediation, Natural Disasters, Stock

Markets, and War. We find that a substantial amount of

risk premia variation is driven by war- and government-

related concerns. 

4.1. Important words 

We calculate the fraction of NVIX variance that each

word drives over the predict subsample. Define ˆ v t ( i ) ≡
x t,i w i as the value of VIX predicted only by n-gram i ∈
{1.. K }. We construct 

h ( i ) ≡
V ar 

(
ˆ v t ( i ) 

)
∑ 

j∈ K V ar 
(

ˆ v t ( j ) 
) (5)

as a measure of the n-gram specific variance of NVIX. 14

Table 7 reports h ( i ) for the top variance driving n-grams

and the regression coefficient w i from the model (2) for

the top variance n-grams. The magnitude of w i does not

completely determine h ( i ), as the frequency of appearances

in the news interacts with w in (5) . 

Clearly, when the stock market makes an unusually

high fraction of front-page news, it is a strong indication

of high implied volatility. The word “stock” alone accounts

for 37% of NVIX variance. Examining the rest of the list,

we find that stock market-related words are important as

well. This should not be surprising because when risk in-

creases substantially, stock market prices tend to fall and
j∈ K 
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Table 8 

Categories total variance share. 

Reported is the percentage of news implied volatility (NVIX) variance [ = 

∑ 

i ∈ C h ( i ) ] that each n-gram category 

C drives over the predict subsample. 

Category Variance Share, percent n-grams Top n-grams 

Government 2 .75 86 Tax, money, rates, government, plan 

Financial Intermediation 3 .99 75 Banks, financial, business, bank, credit 

Natural Disasters 0 .01 71 Fire, storm, aids, happening, shock 

Stock Markets 51 .75 61 Stock, market, stocks, industry, markets 

War 5 .62 54 War, military, action, world war, violence 

Unclassified 35 .90 467,754 US, special, Washington, treasury, gold 
make headlines. “War” is the fourth most important word 

and accounts for 6%. 

4.2. Word categorization 

We rely on the widely used WordNet and Word- 

Net::Similarity projects to classify words. 15 WordNet is a 

large lexical database in which nouns, verbs, adjectives, 

and adverbs are grouped into sets of cognitive synonyms 

(synsets), each expressing a distinct concept. We select a 

number of root synsets for each of our categories and then 

expand this to a set of similar words that have a path- 

based WordNet:Similarity of at least 0.5. 

Table 8 reports the percentage of NVIX variance ( = ∑ 

i ∈ C h ( i ) ) that each n-gram category drives over the pre- 

dict subsample. Stock market-related words explain over 

half the variation in NVIX. War-related words explain 6%. 

Unclassified words explain 36% of the variation. Clearly 

there are important features of the data, among the 

467,745 unclassified n-grams that the automated SVR re- 

gression picks up. While these words are harder to inter- 

pret, they seem to be important in explaining VIX behavior 

in-sample and predicting it out-of-sample. 

Each NVIX component can be interpreted as a distinct 

type of disaster concern. Fig. 3 plots four of the NVIX cat- 

egories most responsible for its variation to provide some 

insight into the interpretation each category. We omit the 

easily interpretable Natural Disasters category because it 

generates a negligible amount of NVIX variation. 

The NVIX Stock Markets component has much to do 

with stock market volatility as shown in Panel A of Fig. 3 . 

Attention to the stock market as measured by this com- 

ponent seems to spike at market crashes and persist even 

when stock market volatility declines. This component 

likely captures proximate concerns about the stock market 

that have other ultimate causes but can also capture con- 

cerns with the market itself. 

Wars are clearly a plausible driver of disaster risk be- 

cause they can destroy a large amount of both human 

and physical capital and redirect resources. Panel B of 

Fig. 3 plots the NVIX War component over time. The index 

captures well the ascent into and fall out of the front page 

of the Journal of important conflicts that involved the US to 

various degrees. A common feature of both world wars is 
15 WordNet ( Miller, 1995 ) is available at http://wordnet.princeton.edu . 

WordNet::Similarity ( Pedersen, Patwardhan, and Michelizzi, 2004 ) is 

available at http://lincoln.d.umn.edu/WordNet-Pairs . 
an initial spike in NVIX when war in Europe starts, a de- 

cline, and finally a spike when the US becomes involved. 

The most striking pattern is the sharp spike in NVIX in 

the days leading up to US involvement in WWII. The news- 

paper was mostly covering the US defensive buildup until 

the Japanese Navy’s surprise attack at Pearl Harbor on De- 

cember 7, 1941. Following the attack, the US actively joined 

the ongoing War. NVIX War jumps from 0.75 in November 

to 2.47 in December and mostly keeps rising. The highest 

point in the graph is the Normandy invasion in June 1944 

with the index reaching 3.83. The Wall Street Journal writes 

on June 7, 1944, the day following the invasion: “Invasion 

of the continent of Europe signals the beginning of the end 

of America’s wartime way of economic life.” Clearly a time 

exists of elevated disaster concerns. Thus, NVIX captures 

not only whether the US was engaged in war, but also 

the degree of concern about the future prevalent at the 

time. 

Policy-related uncertainty as captured by our Gov- 

ernment component tracks well changes in the average 

marginal tax rate on dividends as shown in Panel C of 

Fig. 3 . An important potential disaster from a stock market 

investor perspective is expropriation of ownership rights 

through taxation. While in retrospect, a socialist revolution 

did not occur in the US over this period, the probability 

of major redistributive policy changes could have been el- 

evated at times. 

Financial Intermediation-related NVIX spikes when 

expected, mostly during financial crises. Panel D of 

Fig. 3 shows that the Financial Intermediationcomponent 

is high during bankingcrises identified by Reinhart and 

Rogoff (2011) and during other periods when bank failures 

were high, such as the late 1930s and early 1970s. Appar- 

ent in the figure are the panic of 1907, the Great Depres- 

sion of the 1930s, the savings and loans crisis of the 1980s, 

and the Great Recession of 2008. 

4.3. Which concerns drive risk premia variation? 

We report a text-based decomposition of risk premia 

variation in Table 9 . The shares of risk premia variation due 

to each of the categories are in parentheses. At the yearly 

horizon, government (57%) and war (17%) concerns cap- 

ture the bulk of the postwar variation in risk premia. Both 

categories have a statistically reliable relation with future 

market excess returns. Concerns related to Financial Inter- 

mediation (0.7%), Stock Markets (0.3%), and Natural Dis- 

asters (5%) account for some of the variation in expected 

http://wordnet.princeton.edu
http://lincoln.d.umn.edu/WordNet-Pairs
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Fig. 3. News implied volatility (NVIX) due to different word categories. In all panels dots are monthly NVIX due only to category C -related words ˆ v t ( C ) = 

x t · w ( C ) . In Panel A, the solid line is annualized realized stock market volatility. Shaded regions indicate stock market crashes identified by Reinhart 

and Rogoff (2011) . In Panel B, the shaded regions are US wars: Spanish–American War, World War I, World War II, Korean War, Vietnam War, Gulf War, 

American War in Afghanistan, and Iraq War. In Panel C, the solid line is the annual average marginal tax rate on dividends from Sialm (2009) . In Panel D, 

the solid line is percent of total insured deposits held by US banks that failed each month, from the Federal Deposit Insurance Corporation (FDIC) starting 

in April 1934. Shaded regions indicate banking crises identified by Reinhart and Rogoff (2011) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

returns, but the relation is statistically unreliable. The

harder to interpret orthogonal residual accounts for 19% of

the variation. 

During the postwar sample, war-related concerns ex-

plain a substantial part of the variation in risk premia. This

is somewhat surprising to a 21st century economist who

knows that the US economy did not contract sharply dur-

ing any of its 1945–2009 military conflicts. We stress again,

however, that NVIX captures the concerns prevalent at the

time, without the benefit of hindsight. During the 1896–

1944 period, which included two world wars, war-related

concerns explain a much larger 67% share of this variation,

or 53% in the full sample. A substantial part of the vari-

ation in risk premia is therefore unequivocally related to

disaster concerns. 

Government-related concerns allow for a wider range

of potential interpretations. Work by Pastor and Veronesi

(2012) , Croce, Nguyen, and Schmid (2012) , and Baker,

Bloom, and Davis (2013) emphasizes the role of policy-

related uncertainty in inducing volatility and reducing as-

set prices in the recent period. We find that policy-related

uncertainty explains a substantial part of risk-premia varia-

tion, but not in the early sample. This finding is consistent

with an increasing role for the government in the after-

math of the Great Depression and World War II. 
One could argue that policy-related uncertainty is a

very different type of risk than the rare disaster risk that

the macro-finance literature has in mind. However, we find

the tight relation between our government concerns mea-

sure and the evolution of US capital taxation shown in

Panel C of Fig. 3 suggests that our measure captures con-

cerns related to expropriation risk. Not the typical cash

flow shock we use to model risk, but from the average

capital holder perspective, a sudden sharp rise in taxes is a

disaster. These results suggest that we could need to go be-

yond representative agent models to fully account for vari-

ation in risk premia. 

Just as important, this result shows that most of the

variation in news implied volatility that is priced in the

stock market is due to disaster concerns. The fact that a

substantial fraction of the variation in risk premia over the

last century is due to concerns related to wars and taxation

strongly suggests that risk premia estimates likely reflect

the special realization of history the US happened to ex-

perience during this period ( Brown, Goetzmann, and Ross,

1995 ). 

Stock Markets concerns are not reliably related to future

returns. Panel A of Fig. 3 shows that these concerns track

well the time series of realized volatility. Common sense

and theory predicts that investors pay more attention to
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Table 9 

Risk premia decomposition. 

Reported are monthly return predictability regressions based on six word categories constructed from news implied volatility (NVIX). The dependent 

variables are annualized log excess returns on the market index. All six variables are normalized to have unit standard deviation over the entire sample. 

t NW are Newey and West corrected t-statistics with number of lags and leads equal to the size of the return forecasting window. t GR t-statistics correct 

for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 1% significance levels, respectively. var share is the percent of risk premia 

variation due to each category, i.e., cov 
(
β j X 

j 
t−1 

, 
∑ N 

j=1 β j X 
j 

t−1 

)
/ v ar 

(∑ N 
j=1 β j X 

j 
t−1 

)
. The residual cat egory is the orthogonal component of NVIX that is not 

explained by the five interpretable word categories. 

r e t → t + τ = β0 + 

∑ N 
j=1 β j X j,t−1 + εt+ τ

1945–2009 1896–1945 1896–2009 

τ : 6 months 12 months 6 months 12 months 6 months 12 months 

Government 4 .27 ∗∗∗ 4 .17 ∗∗∗ −0.96 −0.94 2 .54 ∗∗ 2 .47 ∗∗

t NW [3 .15] [2 .90] [0 .37] [0 .44] [2 .20] [2 .07] 

t GR [2 .98] [2 .79] [0 .37] [0 .43] [2 .11] [2 .03] 

var share (45.77) (56.76) (5.34) (5.32) (27.33) (27.18) 

War 4 .72 ∗∗∗ 2 .97 ∗∗ 3 .37 ∗∗ 3 .98 ∗∗∗ 3 .86 ∗∗∗ 3 .71 ∗∗∗

t NW [3 .15] [2 .26] [2 .08] [2 .74] [3 .80] [4 .41] 

t GR [2 .74] [2 .05] [1 .98] [2 .54] [3 .24] [3 .65] 

var share (30.70) (17.37) (57.98) (66.75) (53.98) (52.96) 

Fin. intermediation 0 .26 0 .67 0 .86 1 .74 1 .04 1 .48 

t NW [0 .10] [0 .37] [0 .32] [0 .78] [0 .61] [1 .03] 

t GR [0 .10] [0 .36] [0 .32] [0 .77] [0 .60] [1 .00] 

var share (0.01) (0.71) (0.26) (1.45) (0.27) (2.10) 

Stock markets 0 .87 0 .55 3 .27 3 .06 0 .93 1 .08 

t NW [0 .26] [0 .20] [1 .42] [1 .13] [0 .57] [0 .59] 

t GR [0 .26] [0 .20] [1 .36] [1 .11] [0 .56] [0 .58] 

var share (0.76) (0.33) (42.47) (37.47) (6.30) (7.61) 

Natural disasters 0 .95 1 .03 1 .90 0 .05 0 .69 1 .02 

t NW [1 .08] [1 .63] [0 .97] [0 .03] [0 .80] [1 .55] 

t GR [1 .07] [1 .61] [0 .97] [0 .03] [0 .79] [1 .54] 

var share (3.21) (5.30) (4.74) (0.06) (0.63) (2.32) 

Residual 2 .26 ∗∗ 2 .02 ∗ 1 .35 1 .20 1 .90 ∗ 1 .48 

t NW [2 .03] [1 .87] [0 .37] [0 .36] [1 .81] [1 .49] 

t GR [1 .87] [1 .74] [0 .37] [0 .36] [1 .69] [1 .42] 

var share (19.54) (20.19) (0.41) (0.40) (12.03) (7.83) 

R 2 6 .60 8 .87 3 .87 6 .88 4 .01 6 .35 

Observations 779 779 588 588 1,367 1,367 
the stock market in periods of high volatility ( Abel, Eberly, 

and Panageas, 2007; Huang and Liu, 2007 ). While these 

concerns of the stock market with itself explain about half 

the variation in NVIX, we find that this variation is not 

priced. 

We were surprised to find that Financial Intermedia- 

tion does not account for much of the time variation in 

risk premia in our data. This was puzzling to us because 

the most important event in the sample we estimate NVIX 

is the 20 07–20 08 financial crisis. There are several possi- 

ble explanations for this evidence. Our measure of uncer- 

tainty could fail to pick up concerns related to the inter- 

mediary sector. However, Panel D of Fig. 3 strongly sug- 

gests that our measure gets the timing of the major fi- 

nancial events right. For example, during the Great De- 

pression, the intermediation measure peaks in 1933, three 

years after NVIX peaks. This timing lines up exactly with 

the declaration of a national banking holiday and with 

the peak in bank failures ( Cole and Ohanian, 1999 ). An- 

other possibility is that financial crises are intrinsically dif- 

ferent because they are liability crises, essentially credit 

booms gone bust ( Krishnamurthy and Vissing-Jorgensen, 

2013; Schularick and Taylor, 2009 ). Reinhart and Rogoff

(2011) suggest that financial crises are the result of com- 

placency and a sense of “this time is different” among in- 

vestors, i.e., financial crises happen only when investors 
are not concerned about financial intermediaries. Moreira 

and Savov (2016) build a macroeconomic model consis- 

tent with the notion that financial crises happen when in- 

vestors perceive risk to be low and predict that times of 

high intermediary activity are periods of low risk premia. 

The fact that Financial Intermediation does not account for 

much of the time variation in risk premia in our data is 

consistent with our measure picking up financial interme- 

diary activity during normal times and concerns related to 

financial intermediaries during financial crises. 

Our fifth category, Natural Disasters, also fails to predict 

returns. This is somewhat expected because we perceive as 

unlikely that time variation exists in the likelihood of nat- 

ural disasters at the frequencies we examine. Even though 

a large fraction of NVIX variation is not interpretable, as 

the overwhelming majority of words are unclassified, this 

residual component explains at most 20% of the variation 

in risk premia at annual frequencies. Our ex ante chosen 

categories seem to do a good job of capturing the concerns 

that impact risk premia, but a non trivial fraction of risk 

premia is still left unexplained. 

Taken together, these results paint a novel picture of 

the origins of aggregate fluctuations. Of the roughly 4% 

( = 

√ 

R 2 σ 2 
Retruns 

= 

√ 

0 . 063 × 0 . 16 2 ) a year variation in risk 

premia that news implied volatility can measure ( Table 9 , 

Column 6), about half is driven by war concerns, tightly 
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Fig. 4. Filtered disaster probability. Panel A depicts the posterior probability that the US economy is in a disaster regime, I D t = Prob 
(
s t = 1 | y T ). Panel B 

depicts the probability that the economy transitions into a disaster regime during a particular month, I N→ D 
t → t +1 = Prob 

(
s t+1 = 1 , s t = 0 | y T ). Both measures are 

posterior distributions implied by aggregate consumption data and aggregate stock market return data. Estimation details are in Appendix Section A.3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

related to the type of disasters that motivates the rare

disaster literature. An additional 27% of this variation is

plausibly related to expropriation risk, which is different

from the cash flow shocks usually studied in rare disaster

models. 

5. A century of disaster concerns 

We extend our analysis to include the earlier 1896–

1944 sample to further evaluate the time-varying disas-

ter risk hypothesis. The occurrence of the Great Depression

and the two world wars allows us to directly test whether

NVIX has information regarding the likelihood of a disas-

ter and how disaster realizations impact the predictability

pattern. 

We develop a formal methodology to empirically iden-

tify economic disasters. We then test whether NVIX en-

codes forward-looking information regarding disaster real-

izations and whether a similar relation between NVIX and

future returns exists in the prewar sample. 

Consistent with time-varying rare disaster models, we

find that NVIX is abnormally high up to 12 months before

a disaster. Moreover, once we adjust our estimation to take

into account disaster realizations in the prewar sample and

their persistence, the relation between NVIX and future re-

turns is strikingly similar to our postwar estimates. 

5.1. Identifying rare disasters 

Before we can say anything about the ability of NVIX

to predict disasters, we need to identify disasters and

their exact timing. We formally measure disasters using

a Bayesian framework in the spirit of ( Nakamura, Steins-

son, Barro, and Ursúa, 2013 ), which generates endoge-

nous estimates of the timing and length of disasters. The

( Nakamura, Steinsson, Barro, and Ursúa, 2013 ) model can

be viewed as a disaster filter. Just like a business cy-

cle filter isolates business cycle movements in output,
their model isolates consumption movements attributable

to disasters. Here, we provide only an intuitive description

and relegate its details to Appendix Section A.3 . 

Our main contribution over ( Nakamura, Steinsson,

Barro, and Ursúa, 2013 ) is to extend their consumption

growth-based framework to include stock market returns

as an additional signal about the state of the economy,

to more precisely determine disaster arrival times. Impor-

tantly, stock market drops are necessary but not sufficient

for disaster identification. The model interprets large nega-

tive returns as more likely to indicate transitions into dis-

aster, if preceding volatility is low and future consump-

tion growth is persistently negative. Large negative returns

that are not followed by drops in economic activity are in-

terpreted as a mix of increases in volatility and unusually

large negative return realizations. This extension allows us

to pinpoint the timing of regime changes even in the ear-

lier part of our sample, when consumption is available

only annually. For example, annual consumption growth in

1929 was a healthy 3%, followed by a contraction of 6.4%

in 1930. Without stock market data and more coarse con-

sumption data, timing the start of the Great Depression is

not possible. Our framework interprets the sharp drop in

the stock market in October 1929, together with the fact

that consumption growth decreases sharply, as a high like-

lihood that the economy transitioned to a disaster in Octo-

ber 1929. 

We use the filtered probability of a disaster that

emerges from this Bayesian framework to evaluate

whether NVIX predicts disasters. Fig. 4 Panel A, shows the

posterior probability that the economy is in a disaster state

from the econometrician’s perspective. We identify three

distinct disaster periods: two disasters during the period

known as the Great Depression, October 1929 to January

1933, and then June 1937 to 1939, as well as a four-year

period that starts with the US entry into World War I

in 1917 and lasts until the end of the 1920–1921 depres-

sion. Other periods stand out as near misses, such as the

20 07–20 09 financial crisis, the recession of the early 1980s



152 A. Manela, A. Moreira / Journal of Financial Economics 123 (2017) 137–162 

Table 10 

News implied volatility predicts disasters. 

Reported are monthly disaster predictability regressions based on news implied volatility (NVIX). The dependent variable is I N→ D 
t → t + τ = I N→ D 

t+1 + 

∏ τ−1 
j=1 (1 −

I N→ D 
t+ j ) I N→ D 

t+ j+1 
, which reflects the probability that the economy transitions into a disaster between t and t + τ . Each row and each column represents a 

different regression. Rows show different forecasting horizons. Column 1 shows disaster predictability only controlling for the regime of the economy 

s t = I D t > 0 . 5 . Column 2 adds NVIX 2 , and column 3 adds the interaction NVIX 2 × s t . Columns 4–8 control for alternative measures of expected stock market 

variance. Models 1 includes past realized variance. Model 2 uses an AR(3) forecasting model. Model 3 adds price-to-earnings ratio to Model 2. Model 4 

adds NVIX 2 to Models 3 and 5 adds credit spread to Model 4, respectively, Model 6 uses as a variance proxy E 
[
V IX 2 t−1 | VAR 

]
from Table A.4 , the forecast of 

VIX 2 using contemporaneous and two lags of realized variance. The sample is January 1896 to December 2009 for Columns 1–7 and 9 and January 1919 

to December 2009 for Column 8. t NW are Newey and West corrected t-statistics with number of lags and leads equal to the size of the return forecasting 

window. t GR t-statistics correct for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 1% significance levels, respectively. 

I N→ D 
t → t + τ = β0 + β1 NV IX 2 t−1 + β2 s t−1 + β3 s t−1 × NV IX 2 t−1 + β4 EVAR t−1 + β5 s t−1 × EVAR t−1 + εt+ τ

τ (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 β1 × 100 0 .01 ∗ 0 .01 ∗ 0 .01 0 .01 0 .01 0 .01 0 .00 0 .01 

t NW [1 .74] [1 .78] [1 .40] [1 .24] [1 .25] [0 .88] [0 .35] [1 .26] 

t GR [1 .70] [1 .73] [1 .36] [1 .21] [1 .21] [0 .85] [0 .35] [1 .23] 

R 2 0 .01 0 .23 0 .25 0 .28 0 .30 0 .30 0 .31 0 .54 0 .30 

3 β1 × 100 0 .03 ∗ 0 .03 ∗ 0 .03 ∗ 0 .03 0 .03 0 .03 0 .02 0 .03 

t NW [1 .92] [1 .93] [1 .80] [1 .52] [1 .52] [1 .23] [0 .85] [1 .48] 

t GR [1 .86] [1 .87] [1 .70] [1 .46] [1 .46] [1 .15] [0 .83] [1 .42] 

R 2 0 .01 0 .79 0 .88 0 .93 0 .94 0 .94 0 .94 1 .62 0 .95 

6 β1 × 100 0 .06 ∗ 0 .07 ∗ 0 .06 ∗ 0 .06 ∗ 0 .06 ∗ 0 .06 0 .04 0 .06 ∗

t NW [1 .89] [1 .89] [1 .80] [1 .67] [1 .67] [1 .37] [0 .86] [1 .66] 

t GR [1 .84] [1 .83] [1 .70] [1 .59] [1 .58] [1 .27] [0 .84] [1 .57] 

R 2 0 .00 1 .77 1 .95 1 .99 2 .03 2 .04 2 .04 3 .84 2 .03 

12 β1 × 100 0 .12 ∗ 0 .12 ∗ 0 .13 ∗ 0 .13 ∗ 0 .13 ∗ 0 .13 ∗ 0 .12 0 .13 ∗

t NW [1 .81] [1 .77] [1 .83] [1 .79] [1 .78] [1 .68] [1 .23] [1 .79] 

t GR [1 .76] [1 .72] [1 .73] [1 .69] [1 .68] [1 .51] [1 .17] [1 .68] 

R 2 0 .00 3 .04 3 .17 3 .25 3 .26 3 .23 3 .23 5 .56 3 .26 

24 β1 × 100 0 .17 0 .18 0 .19 ∗ 0 .19 0 .19 0 .20 0 .18 0 .19 

t NW [1 .56] [1 .53] [1 .65] [1 .63] [1 .62] [1 .57] [1 .17] [1 .63] 

t GR [1 .53] [1 .50] [1 .57] [1 .55] [1 .54] [1 .43] [1 .12] [1 .55] 

R 2 0 .15 3 .31 3 .42 3 .55 3 .53 3 .49 3 .49 6 .25 3 .53 

Observations 1,368 1,367 1,367 1,364 1,364 1,364 1,364 1,091 1,365 

Variance model — — — 1 2 3 4 5 6 
triggered by Federal Reserve chairman Paul A. Volcker’s ac- 

tions to lower inflation, the oil shock of the 1970s, and the 

US entry into WWII. 

Fig. 4 Panel B, shows the probability that the econ- 

omy transitioned into a disaster state in a particular 

month. This probability of state transition is our empiri- 

cal proxy for a disaster realization. Formally, the disaster 

transition probability over an interval [ t, t + τ ] is I N→ D 
t → t + τ = 

P r( 
∑ τ

u =1 s t+ u ≥ 1 | s t = 0 , y T ) . 16 This continuous measure al- 

lows better inference because it relies not only on clear 

transitions into disaster, but also on near misses, such as 

the 20 07–20 09 period. 

We deliberately focus on a framework in which the 

probability of a disaster transition is constant, because it 

identifies disasters exclusively from the ex post behavior 

of consumption and stock market data. By contrast, had 

we allowed the disaster probability to vary over time, the 

Bayesian filter applied to the data would be more likely to 

infer a high disaster probability just before disaster realiza- 

tions, or, conversely, if we introduced a disaster probabil- 

ity signal (NVIX) in the estimation, the Bayesian procedure 

would be likely to find disasters in periods when the dis- 

aster signal is high. 
16 This expression can be written as I N→ D 
t → t + τ = Pr(s t+1 = 1 | s t = 

0 , y T ) + 

∏ τ−1 
j=1 (1 − Pr(s t+ j = 1 | s t+ j−1 = 0 , y T )) Pr(s t+ j+1 = 1 | s t+ j = 0 , y T ) = 

I N→ D 
t+1 + 

∏ τ−1 
j=1 (1 − I N→ D 

t+ j ) I N→ D 
t+ j+1 

. 
5.2. Disaster predictability 

A robust prediction of rational time-varying disaster 

risk theories is that abnormally high disaster concerns 

precede disasters. This prediction does not say economic 

disasters are fully predictable, but rather that, in a long 

enough sample, disasters occur more often when disaster 

concerns are elevated. We test whether our proxy for the 

disaster predictability, NVIX, predicts disasters using a sim- 

ple linear probability model. 

Our main specification tests if NVIX predicts disaster 

transitions as proxied by I N→ D 
t → t + τ , controlling for the con- 

temporaneous disaster state s t = I D t > 0 . 5 and the interac- 

tion of the current disaster state and NVIX. Intuitively, the 

interaction controls for the mechanical effect that NVIX 

cannot predict a transition into disaster when the economy 

is already in a persistent disaster state. We control for ex- 

pected stock market variance and its interaction with the 

current disaster state, using the same variance models of 

Section 3.3 . 

Table 10 reports the coefficient on NVIX for different 

horizons and subject to alternative controls for expected 

stock market risk. As in the return predictability regres- 

sions, we run the regression in variance space consistent 

with the theory (e.g., Gabaix, 2012 ). We find that, in the 

full sample, NVIX is high just before disaster transitions. 

When the filtered disaster probability is zero and NVIX 

2 is 

one standard deviation above its mean, the probability of a 
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Fig. 5. News Implied Volatility (NVIX) and variance forecasts before and after transitions into disaster. The black line is ̂ NV IX 
2 
, the component of NVIX 2 

orthogonal to the variance based forecast of VIX 2 . The gray line is the realized variance-based forecast of VIX 2 (Model 6 in Table 10 ). Both measures 

are demeaned and standardized using their sample standard deviation. Reported are averages across disaster transitions organized in event time, with a 

disaster transition defined as a month t in which the disaster transition probability is higher than 0.1 (I N→ D 
t−1 → t > 0 . 1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disaster over the next 12 months increases by 2.5 percent-

age points (Column 3 times the NVIX standard deviation).

Columns 4–8 use various models to control for expected

stock market variance. Coefficients and statistical signifi-

cance are stable across specifications. Column 7 (Model

4) is of special interest as it uses NVIX in the variance

forecasting model. Similar to what we find for returns in

Table 5 , the disaster forecasting ability of NVIX is orthog-

onal to its ability to forecast variance. Only when we add

credit spreads (Model 5) to the variance forecasting model,

which is also a disaster sensitive measure and is available

in a much shorter sample, the coefficients become less pre-

cisely estimated and lose their statistical significance (Col-

umn 8). Coefficients, however, barely change. 

These results show that disaster risk is different

from volatility risk. Even though disasters are periods of

elevated volatility, realized financial volatility has little

forecasting power about transitions into an economic dis-

aster. This feature is especially evident at medium-term

horizons, three to 24 months, when volatility forecasts

barely impact the regression R-squared. 

Fig. 5 illustrates this predictability result by showing

the average behavior of NVIX and a realized variance-

based measure of VIX around disasters. Up to 15 months

before a disaster, NVIX is consistently above its long-run

mean, while the variance-based measure remains close to

its long-run mean. During a disaster transition, realized

variance mechanically spikes up, and as time passes dif-

ferences in the behavior of realized variance and NVIX

disappears. 

Overall these results reinforce the hypothesis that

NVIX captures concerns about disaster risk. The results

also show that these concerns are rational in the weak
sense that disaster concerns are associated with future 
 

transitions into a disaster regime. The magnitude of

disaster risk variation is also reasonable. Our esti-

mates imply that the probability of the economy tran-

sitioning into a disaster within a year has a stan-

dard deviation of 2.6% ( Table 10 , average across speci-

fications, σ (E[ I N→ D 
t → t +12 

| NV IX 2 
t−1 

]) = β1 × σ (NV IX 2 ) = 0 . 13 ×
20 . 20 ). Because in our sample, the annual unconditional

probability of transition into a disaster is 3.78%, our esti-

mates imply that that the annual probability of a disaster

arrival is below 9.5% more than 95% of the time. The prob-

ability of being in a disaster state is substantially higher,

because some disasters are persistent. 

5.3. Return predictability 

Fig. 6 shows that the inclusion of either the Great De-

pression or World War II has a large impact on our es-

timates. The figure depicts how the return predictability

estimates evolve over our sample, with the date on the

X-axis denoting the beginning of the estimation sample.

Once each of these rare events drops out of the estimation

sample, the coefficient increases sharply. 

From the perspective of a rare disaster risk model,

two plausible mechanisms can reconcile the full sample

with our findings about the postwar sample. (1) Disas-

ter realizations could statistically attenuate the return pre-

dictability relation if NVIX successfully forecasts disasters

as predicted by the theory. (2) Long-lasting disaster pe-

riods, a salient feature of the data ( Nakamura, Steinsson,

Barro, and Ursúa, 2013 ), could have a similar effect as

time-varying rare disaster models (e.g., Gourio, 2012 ) pre-

dict that the link between the disaster probability, op-

tion implied volatility, and expected returns breaks down

when the economy is already in a disaster state. Intuitively,
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Fig. 6. Rolling return predictability regression estimates. Reported are rolling window coefficient β1 estimates for the excess return predictability regression 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + εt at the τ = 12 months horizon. Years on the X-axis represent the start of the estimation window. All windows run until 2009, 

the end of our sample. The shaded region represents the 95% confidence interval. 
options have little additional information about a disaster 

when the economy is already in this state. 

We next investigate whether the large macroeconomic 

events of the early sample are behind the sharp break in 

return predictability. If the probability of a disaster per pe- 

riod is low enough, a time-varying rare disaster model pre- 

dicts that realized excess returns can be written in terms 

of the expected probability of a disaster event and actual 

disaster realizations as 

r e t → t + τ = β0 + β1 E t [ I 
N→ D 
t → t + τ ] + 

(
β2 + εD 

t → t + τ
)
I N→ D 
t → t + τ

+ εN 
t → t + τ , (6) 

where β2 = E t [ r 
e 
t → t + τ | I N→ D 

t → t + τ = 1] is the expected excess 

return conditional on a disaster event, a large negative 

number. In models such as Gabaix (2012) , β1 is the ex- 

pected disaster loss under the risk-neutral measure. If 

M t ,t + τ is the stochastic discount factor that prices cash 

flows between t and t + τ, β1 = −E t [ M t ,t + τ r e t → t + τ | I N→ D 
t → t + τ = 

1] . In models with recursive utility ( Gourio, 2012; Wachter, 

2013 ), β1 also includes the risk premia associated with dis- 

aster probability risk, which compensate investors for the 

risk associated with changes in the probability of a disas- 

ter. If no risk premia are associated with disaster or disas- 

ter probability risks, then β1 = −β2 . In general, we expect 

β1 > −β2 if investors require a premium to be exposed to 

disaster risk. 

In samples without disasters, a univariate regression 

of excess returns on the disaster probability recovers a 

consistent estimate of β1 , and that is how we interpret 

our postwar results. Generally, however, the estimates de- 

pend on the number of realized disasters in finite sam- 

ples, which renders the coefficient estimates not directly 

interpretable. 
A regression of realized returns on the disaster proba- 

bility that excludes disaster realizations recovers consistent 

estimates of β1 as long as E 
[
I N→ D 
t → t + τ ε

N 
t → t + τ

]
= 0 . This con- 

dition is satisfied in the time-varying rare disaster model, 

but it might not hold under a plausible alternative model 

in which stock market variance is variable and predictable. 

We pursue here the strategy of excluding disasters, which 

is the right approach under the time-varying rare disaster 

model. In Appendix Section A.4 we estimate a truncated 

regression model with time-varying volatility and find that 

the bias adjustment is modest and has no material effect 

on the return predictability coefficients or their statistical 

significance. 

Formally, we follow ( Krishnamurthy and Vissing- 

Jorgensen, 2013; Schularick and Taylor, 2009 ) and con- 

struct I R t → t + τ = 1 { I N→ D 
t → t + τ > 0 . 5 } , which is an indicator variable 

that turns on whenever the probability of a disaster transi- 

tion in the forecasting window is above 50%. Following the 

same logic behind the disaster predictability regressions of 

Section 5.2 , we add controls for the contemporaneous dis- 

aster state s t = 1 { I D t > 0 . 5 } and interactions of the state with 

NVIX. 

Table 11 reports the normal times predictability coef- 

ficient of news implied variance, its t-statistic, and the r- 

squared for alternative horizons and controls. Column 1 

presents full sample estimates including disasters. Consis- 

tent with Fig. 6 , the positive relationship between NVIX 

and future returns is statistically weak and statistically sig- 

nificant only at the 12-month horizon. Columns 2–9 ex- 

clude periods when the forecasting window has a disas- 

ter transition (I R t → t + τ = 1) . This procedure removes a very 

small number of months. For the one-month-ahead (12- 

month-ahead) ahead forecast, it excludes three (46) obser- 

vations. Consistent with the results for the postwar sample, 
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Table 11 

Return predictability in the full sample. 

Reported are monthly return predictability regressions based on news implied volatility ( NVIX 2 ). The dependent variables are annualized log excess 

returns on the market index. Each row and each column represents a different regression. Rows show different forecasting horizons. Column 1 controls 

for the state of the economy, s t = I D t > 0 . 5 , and the interaction with NVIX 2 . Columns 2–8 exclude disasters. A observation t is excluded as a disaster month 

if I R t → t + τ = 

(
I N→ D 
t → t + τ > 0 . 5 

)
= 1 , that is, if the filtered probability implies a higher than 50% probability that the economy transitioned into a disaster during 

the return forecasting window. Columns 3–8 control for alternative measures of expected stock market variance: past realized variance; AR(3) forecasting 

Model; adds price to earnings ratio to Model 2; adds NVIX 2 to Model 3; and adds credit spread to Model 4; and Model 6 uses as a variance proxy 

E 
[
V IX 2 t−1 | VAR 

]
from Table A.4 , the forecast of VIX 2 using contemporaneous and two lags of realized variance. The sample is January 1896 to December 

2009 for Columns 1–7 and 9 and January 1919 to December 2009 for Column 8. t NW are Newey and West corrected t-statistics with number of lags and 

leads equal to the size of the return forecasting window. t GR t-statistics correct for the fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 

5%, and 1% significance levels, respectively. 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + β2 s t−1 + β3 s t−1 × NV IX 2 t−1 + β4 EVAR t−1 + β5 s t−1 × EVAR t−1 + εt+ τ

τ (1) (2) (3) (4) (5) (6) (7) (8) 

1 β1 0 .13 0 .15 0 .14 0 .14 0 .15 0 .14 0 .16 0 .14 

t NW [1 .23] [1 .46] [1 .33] [1 .31] [1 .38] [1 .10] [1 .03] [1 .30] 

t GR (1.22) (1.43) (1.29) (1.27) (1.33) (1.05) (1.00) (1.26) 

R 2 0 .49 0 .61 0 .62 0 .63 0 .62 0 .62 1 .05 0 .62 

Excl./Obs. 0/1,367 3/1,364 3/1,361 3/1,361 3/1,361 3/1,361 3/1,088 3/1,362 

3 β1 0 .05 0 .08 0 .08 0 .07 0 .07 0 .07 0 .14 0 .07 

t NW [0 .58] [0 .90] [0 .88] [0 .78] [0 .85] [0 .74] [1 .26] [0 .76] 

t GR (0.58) (0.89) (0.87) (0.77) (0.84) (0.72) (1.20) (0.75) 

R 2 0 .48 0 .65 0 .66 0 .67 0 .66 0 .66 1 .86 0 .67 

Excl./Obs. 0/1,367 9/1,358 9/1,355 9/1,355 9/1,355 9/1,355 9/1,082 9/1,356 

6 β1 0 .09 0 .12 ∗∗ 0 .12 ∗ 0 .12 ∗ 0 .12 ∗ 0 .13 0 .22 ∗∗∗ 0 .12 ∗

t NW [1 .40] [1 .98] [1 .77] [1 .68] [1 .78] [1 .63] [2 .87] [1 .66] 

t GR (1.37) (1.91) (1.68) (1.59) (1.68) (1.47) (2.33) (1.57) 

R 2 1 .37 1 .82 2 .11 2 .48 2 .45 2 .43 5 .10 2 .51 

Excl./Obs. 0/1,367 20/1,347 20/1,344 20/1,344 20/1,344 20/1,344 20/1,073 20/1,345 

12 β1 0 .10 ∗ 0 .14 ∗∗∗ 0 .14 ∗∗ 0 .14 ∗∗ 0 .15 ∗∗ 0 .15 ∗ 0 .27 ∗∗∗ 0 .14 ∗∗

t NW [1 .72] [2 .71] [2 .20] [2 .10] [2 .21] [1 .95] [3 .46] [2 .08] 

t GR (1.68) (2.54) (2.03) (1.94) (2.02) (1.69) (2.61) (1.92) 

R 2 2 .29 3 .46 4 .94 5 .79 5 .72 5 .67 13 .64 5 .86 

Excl./Obs. 0/1,367 46/1,321 46/1,318 46/1,318 46/1,318 46/1,318 46/1,055 46/1,319 

24 β1 0 .08 0 .14 ∗∗∗ 0 .15 ∗∗ 0 .15 ∗∗ 0 .15 ∗∗ 0 .16 ∗∗ 0 .28 ∗∗∗ 0 .15 ∗∗

t NW [1 .56] [2 .85] [2 .42] [2 .32] [2 .39] [2 .14] [3 .95] [2 .30] 

t GR (1.53) (2.66) (2.20) (2.11) (2.17) (1.82) (2.82) (2.09) 

R 2 3 .54 6 .57 9 .09 10 .05 10 .00 9 .95 21 .22 10 .13 

Excl./Obs. 0/1,367 94/1,273 94/1,270 94/1,270 94/1,270 94/1,270 94/1,019 94/1,271 

Variance model — — 1 2 3 4 5 6 

Exclude disasters No Yes Yes Yes Yes Yes Yes Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the predictability coefficient β1 is positive and statistically

significant at six, 12, and 24 months. 

Columns 3–8 show that these results are robust to the

inclusion of various measures of expected variance. For the

columns in which we use the credit spread in the vari-

ance model, the sample starts in 1919 and, as a result, the

coefficients increase considerable and become better mea-

sured. The most conservative specification is in Column 6,

which includes NVIX in the variance model and controls

for any variance forecasting ability NVIX could have. 

These results reinforce the time-varying rare disaster

risk interpretation of our findings. We find in the full sam-

ple a relation between NVIX and future returns that is

strikingly similar to the one we find in the postwar sample.

Consistent with this interpretation, the relation between

NVIX and future returns is mostly present during normal

times and implies a large amount of disaster risk premia

variation in frequencies from six months up to two years. 

Quantitatively, the coefficients are in line with the post-

war results, with a one standard deviation increase in

NVIX 

2 leading to σNV IX 2 × β1 ∈ [2 . 9% , 5 . 4%] higher excess

returns in the following year depending on the model we

use to control for stock market risk. This compares with

σ 2 × β1 ∈ [3 . 4% , 5 . 3%] over the postwar sample. 
NV IX 
5.4. A quantitative evaluation of time-varying rare disaster 

models 

Time-varying rare disaster risk models were developed

as a candidate explanation for the excess volatility puz-

zle. Their quantitative success as an explanation for the

puzzle hinges on the pattern of time variation in disas-

ter risk and the sensitivity of excess returns to disaster

probability risk. Calibrations such as Gourio (2012) and

Wachter (2013) use cross-country estimates such as Barro

and Ursua (2008) to determine the severity of disasters in

terms of drops in consumption and losses in the finan-

cial claims of interest. Together with assumptions about

investors preferences, this disciplines the model-implied

relation between time variation in the disaster probabil-

ity and risk premia. However, in the absence of direct

measurement of the disaster probability, the modeler is

free to pick a disaster probability process that fits the

pattern of return predictability and excess volatility ob-

served in the data. Our disaster probability estimates can

inform such calibrations. Our return probability estimates

are also useful in providing a check if the cross-country

data extrapolates well to the US. By analyzing the sensitiv-

ity of excess returns to disaster probability shocks, we can



156 A. Manela, A. Moreira / Journal of Financial Economics 123 (2017) 137–162 

Table A1 

Correlations between alternative measures of tail risk. 

The options-based measured correlations are for the period January 

1996 to December 2008 for which we have all four quantities. The news- 

based measure correlations are for the full sample, January 1896 to De- 

cember 2009. We use the prefix N to denote news-based counterparts to 

option-based measures. 

Panel A: Option-based measures 

VIX 2 VIX premium LT Slope 

VIX 2 1.00 0.95 0.98 0.85 

VIX premium 1.00 0.91 0.86 

LT 1.00 0.86 

Slope 1.00 

Panel B: News-based measures 

NVIX 2 NVIX premium NLT NSlope 

NVIX 2 1.00 0.83 0.92 0.82 

NVIX premium 1.00 0.86 0.87 

NLT 1.00 0.91 

NSlope 1.00 
evaluate if the disaster concerns that we measure are re- 

lated to events of the same magnitude as the ones implied 

by the cross-country data. 

We compare our estimates with Wachter (2013) be- 

cause it provides direct counterparts to the quantities of 

interest. In that model, unconditionally, the disaster prob- 

ability spends 95% of the time in values lower than 10%. 

This lines up surprisingly well with our estimates, in which 

the disaster probability spends 95% of the time in values 

below 9.5% (see Section 5.2 ). Thus, in terms of overall vari- 

ation in the disaster probability, the Wachter (2013) cali- 

bration is in line with our estimates. However, it achieves 

this disaster probability distribution by considering a more 

persistent disaster probability process than we recover 

from the data. Its assumed (annualized) disaster prob- 

ability has a persistence of 0.9934 at the monthly fre- 

quency and a standard deviation of 0.36%. We estimate a 

1.55% standard deviation and 0.8 persistence at the same 

frequency. At the yearly frequency, that model implies a 

volatility of disaster probability of 1.21% and persistence of 

0.92, while our estimates indicate a standard deviation of 

2.26% and persistence of 0.5. The lower persistence of the 

disaster predictability detected in the data implies the dis- 

aster risk model can explain much less of the very long- 

run movements observed in risk premia. 

The Wachter (2013) setup produces a sensitivity of risk 

premia to the disaster probability of 1.8 in the calibra- 

tion with recursive utility. 17 For example, if the instanta- 

neous disaster probability increases by 1 percentage point, 

the instantaneous risk premium increases by 1.8 percent- 

age points. 18 In its constant relative risk aversion (CRRA) 

utility specification, the sensitivity is slightly above 1, with 

a 1 percentage point increase in the probability of a disas- 

ter mapping into a 1 pp higher risk premia. We estimate 

that a one standard deviation movement in NVIX increases 

the probability of a disaster by 2.5% and expected returns 

by 2.9%, implying a risk premia sensitivity to disaster of 

1.16, very close to the Wachter (2013) CRRA specification. 

This indicates that the type of disaster risk that our mea- 

sure is capturing is related to events of similar severity as 

the ones implied by the cross-country data. 

Our estimates suggest that the disaster probability pro- 

cess and the risk premia variation it induces are consis- 

tent with a leading calibration of the rare disaster risk 

model. While our estimates and the Wachter (2013) cali- 

bration agree on the unconditional distribution of disaster 

risk shocks, our estimates point to shocks (to the disas- 

ter probability) that are larger, but less persistent. The data 

suggest that disaster concerns produce large, but relatively 

short-lived, spikes in risk premia. 

6. Conclusion 

We use a text-based method to extend options implied 

measures of uncertainty back to the end of the 19th cen- 

tury. We find that our news-based measure of implied 

volatility, NVIX, predicts returns at frequencies from six 
17 There the coefficient of relative risk aversion is 3 and the intertempo- 

ral elasticity of substitution is 1. 
18 This quantity can be computed directly from ( Wachter, 2013 ), Fig. 3. 
months up to 24 months. Four pieces of evidence suggest 

that these return predictability results are driven by vari- 

ation in investors’ concerns regarding rare disasters. First, 

we find that the predictive power of NVIX is orthogonal 

to contemporaneous or forward-looking measures of stock 

market volatility. Second, we use alternative options-based 

measures, which are more focused on left tail risk, to es- 

timate their news-based counterparts and find similar re- 

turn predictability results. Third, using content analysis, we 

trace a large part of the variation in risk premia to con- 

cerns about wars and government policy, which are tightly 

related to the types of events discussed in the rare disas- 

ters literature. Fourth, we show that our measure predicts 

disasters, even after controlling for stock market volatil- 

ity. Importantly, the amounts of predictability detected in 

stock returns and disasters are quantitatively consistent 

with disasters of the same magnitude as shown by Barro 

and Ursua (2008) using cross-country data. 

Appendix A 

A1. Alternative tail-risk measures 

In Table A.1 we present raw correlations between the 

different option based measures and their corresponding 

news based measures. 

A2. Inference 

Our main specification poses two statistical challenges 

for inference: the use of overlapping observations and the 

use of generated regressors. The issue of overlapping data 

can be appropriately addressed with off-the-shelf adjust- 

ments in our empirical design. We adjust standard errors 

to reflect the dependence that this introduces into forecast 

errors using four different ways: Newey and West (1987) , 

Hansen and Hodrick (1980) , Hodrick (1992) , and bootstrap. 

For the first three standard errors, we use the same num- 

ber of lags as the forecasting window. In our empirical 

analysis, results for all of these test statistics are similar 
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Table A2 

Filtering disasters: calibration parameters. 

All quantities are at the monthly frequency. Discussion of parameter choice is in the Appendix Section A.3.6 . 

Description Parameter Value 

Average dividend volatility σ 2 
d 0 .0025 

Volatility of dividend volatility σ v 0 .0018 

Persistence of dividend volatility ρv 0 .7300 

Measurement error in realized dividend volatility σ rvar 0 .0041 

Log-linearization constant (average price–dividend ratio) κ0 0 .9948 

Equity premium during normal times κ0 + μd (0) − log(R f t ) 0 .0050 

Drop in dividend growth during disasters μd (1) − μd (0) −0 .0058 

Consumption growth in normal times μc (0) 0 .0029 

Drop in consumption growth during disasters μc (1) − μc (0) −0 .0058 

Volatility of consumption growth σ c 0 .0058 

Price-dividend ratio drop in a normal times to disaster transition ψ(1) −0 .2500 

Probability of normal times to disaster transition p 0 .0017 

Probability of disaster to normal times transition 1 − q 0 .0285 
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and robust to the use of somewhat longer lags. We report

( Newey and West, 1987 ) standard errors throughout. 

The second issue is that NVIX (and other news implied

measures) are estimated in a first stage, which could add

to the estimation uncertainty of coefficients in the second

stage ( Murphy and Topel, 2002 ). Before describing how we

adjust our standard errors for the first stage uncertainty, it

is important to note that, under the null of no return pre-

dictability, there is no adjustment to the standard errors.

Thus, if one is testing whether NVIX can predict returns,

one should not adjust the standard errors ( Wooldridge,

2010 , pp. 115–116). 

While theoretically these standard errors should not be

used to construct tests of the null that a return predictabil-

ity coefficient is zero, to be conservative we also develop

a procedure to quantify the estimation uncertainty around

our point estimates that is introduced by the first-stage re-

gression. These standard errors are not useful for statistical

tests when the null is zero, but they are useful for evaluat-

ing the overall uncertainty associated with our estimates. 

Because we use a support vector regression in the

first stage, a machine learning methods for which stan-

dard inference tools have not yet been developed, we can-

not apply an off-the-shelf methodology. Instead, we merge

the ( Murphy and Topel, 2002 ) methodology for comput-

ing standard errors when regressors are estimated with a

bootstrap methodology to estimate the estimation uncer-

tainty in the first stage. 

The second-stage regression model can be written as 

y = β0 x 0 + β1 f (w , x 1 ) + εt , (7)

where in our setting y is stock market excess returns, x 0
are the set of regressors that do not feature a generated re-

gressor problem, and f ( w, x 1 ) is the function in which pa-

rameters w are estimated in a first stage. In general, f can

be multivariate, so let it be an m × 1 vector of functions. In

our main specification, m = 1 as f ( ̂  w , x 1 ) = 

( ̂ w ·x 1 ) 2 
12 , where

ˆ w 

′ x 1 = NV IX; that is, f ( ̂  w , x 1 ) is NVIX in variance space

and in monthly units, where the vector w is estimated

in the first stage to fit VIX and x 1 is the vector of word

counts. 

We apply Theorem 1 of Murphy and Topel (2002) to

our setting. Define Z = [ x , f ( ̂  w , x )] and F ∗ as
0 1 
the matrix whose individual entries are given by

F ∗
t j 

= 

∑ m 

k =1 β1 ,k 
∂ f k 
∂w j 

( ̂ w , x 1 ) , where j indexes the vector of

n-gram weights w . Let Q 1 = lim T →∞ 

∑ T 
t=1 Z t �F ∗t 

T and

Q 0 = lim T →∞ 

∑ T 
t=1 Z 

′ 
t Z t 

T . Then the variance-covariance ma-

trix of the two-stage OLS estimator ˆ β = [ ˆ β0 , 
ˆ β1 ] is given

by 

� = �OLS + Q 

−1 
0 Q 1 V ( ̂  w ) Q 

′ 
1 Q 

−1 
0 , (8)

where �OLS is the standard variance-covariance matrix of

the second stage, the one that ignores the fact that ˆ w has

to be estimated in the first stage. In our application, V ( ̂  w )

is a variance-covariance matrix of n-gram weights, which

has the same dimension as our dictionary, N × N , where N

≈ 40 0, 0 0 0. Because we have only 1,368 months in our full

sample, we cannot directly estimate the estimation uncer-

tainty related to the weights. However, our application re-

quires estimating only the uncertainty associated with our

index, which is a linear combination of words. Formally, 

� = �OLS + Q 

−1 
0 V (Q 

′ 
1 ̂  w ) Q 

−1 
0 , (9)

where V (Q 1 · ˆ w ) = V ( 
∑ T 

t=1 Z t �F ∗t 
T · ˆ w ) . In our main specifica-

tion, F ∗
t j 

= 

2 
12 β1 NV IX t x 1 , t . Thus it follows that 

 (Q 1 · ˆ w ) = V 

(∑ T 
t=1 Z t �

2 
12 

β1 NV IX t x 1 ,t · ˆ w 

T 

)
= 

(
2 

12 

β1 

)2 

Q 2 , (10)

where 

Q 2 ≡ V 

(∑ T 
t=1 Z t � NV IX t x 1 ,t · ˆ w 

T 

)
This object is much simpler and has the same dimen-

sions as the total number of coefficients being estimated

in the second stage . In our main specification, V (Q 1 · ˆ w ) is

a 2 × 2 matrix. If β1 = 0 , the generated regressor standard

error adjustment is trivially zero. 

We estimate V (Q 1 · ˆ w ) using bootstrap as follows. NVIX t

is the predicted value of VIX on month t based on the vec-

tor of word counts x 1, t and weight vector ˆ w . We draw

from the train subsample with replacement B = 1 , 0 0 0
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bootstrap samples of the same size. We then estimate al- 

ternative NV IX b,t = ˆ w b · x 1 ,t , b = 1 , . . . , B, using a support 

vector regression with the same hyper-parameters as in 

Footnote 9 . 

We estimate Q 2 by computing the variance-covariance 

matrix 

̂ Q 2 = 

B ∑ 

b=1 

1 

B 

(∑ T 
t=1 Z t � NV IX t ̂  w b · x 1 ,t 

T 

−
B ∑ 

b=1 

1 

B 

∑ T 
t=1 Z t � NV IX t ̂  w b · x 1 ,t 

T 

) 2 

. (11) 

This analysis can be extended for the case in which f ( w, 

x 1 ) is multivariate. For example, in Section 4 , where we de- 

compose NVIX into categories, each category is estimated. 

Therefore, 

f (w , x 1 ) = 

[ 

N ∑ 

j=1 

w j x 1 ,t j , 

N ∑ 

j=1 

w N+ j x 1 ,t j , . . . , 

N ∑ 

j=1 

w (m −1) N+ j x 1 ,t j 

] 

, (12) 
Table A3 

Return predictability: controlling for truncation effects. 

Reported are monthly return predictability regressions based on news implie

returns on the market index. Each row and each column represents a different 

for the state of the economy s = I D > 0 . 5 and the interaction of the state s w

a disaster month if I R t → t + τ = 1 = 

(
I N→ D 
t → t + τ > 0 . 5 

)
, i.e., if the filtered probability im

a disaster during the return forecasting window. Columns 3–8 control for the p

following variables: past realized variance, three lags of realized variance; adds 

spread to Model 4; and use the variance implied VIX E 
[
V IX 2 t−1 | VAR 

]
from Table A

for Columns 1–6 and 8 , and January 1919 to December 2009 for Column 7. t NW 

equal to the size of the return forecasting window. t GR t-statistics correct for the 

1% significance levels, respectively. 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + β2 s t−1 + β3 s t−1 × NV IX 2 t−1 + β4 E

τ (1) (2) (3) (4)

1 β1 × 100 0 .13 0 .15 0 .14 0

t NW [1 .23] [1 .46] [1 .26] [1

t GR [1 .22] [1 .43] [1 .22] [1

R 2 0 .49 0 .61 0 .67 0

Excl./Obs. 0/1367 3/1364 3/1361 3/1

3 β1 × 100 0 .05 0 .08 0 .06 0

t NW [0 .58] [0 .90] [0 .73] [0

t GR [0 .58] [0 .89] [0 .72] [0

R 2 0 .48 0 .65 0 .97 0

Excl./Obs. 0/1367 3/1364 3/1361 3/1

6 β1 × 100 0 .09 0 .12 ∗∗ 0 .12 ∗ 0

t NW [1 .40] [1 .98] [1 .69] [1

t GR [1 .37] [1 .91] [1 .61] [1

R 2 1 .37 1 .82 2 .19 2

Excl./Obs. 0/1367 3/1364 3/1361 3/1

12 β1 × 100 0 .10 ∗ 0 .14 ∗∗∗ 0 .13 ∗∗ 0

t NW [1 .72] [2 .71] [2 .04] [2

t GR [1 .68] [2 .54] [1 .90] [1

R 2 2 .29 3 .46 5 .22 6

Excl./Obs. 0/1367 46/1321 46/1318 46

24 β1 × 100 0 .08 0 .14 ∗∗∗ 0 .14 ∗∗ 0

t NW [1 .56] [2 .85] [2 .28] [2

t GR [1 .53] [2 .66] [2 .09] [2

R 2 3 .54 6 .57 9 .64 10

Excl./Obs. 0/1367 94/1273 94/1270 94

Variance model — — 1 2 

Exclude disasters No Yes Yes Ye
where f ( w, x 1 ) is m × 1, the number of text categories in

the regression, and w is an mN × 1 vector of the stacked 

individual category weights. In this case, 

F ∗t, j = 

m ∑ 

k =1 

β1 ,k 

∂ f k 
∂w j 

=β1 , 1 

[
x 1 ,t j , . . . , 0 

]
+β1 , 2 

[
0 , x 1 ,t j , . . . , 0 

]
+ · · · + β1 ,m 

[
0 , . . . , x 1 ,t j 

]
= 

[
β1 , 1 x 1 ,t j , β1 , 2 x 1 ,t j , . . . , β1 ,m 

x 1 ,t j 

]
(13) 

and, therefore, 

Q 1 · ˆ w = 

∑ T 
t=1 Z t � F ∗t 

T 
· ˆ w 

= 

∑ 

Z t 
[∑ m 

k =1 β1 ,k 

∑ N 
j=1 w (k −1) N+ j x 1 ,t j 

]
T 

, (14) 

which can again be estimated via bootstrap. 

A3. Structural disaster identification 

We identify disasters using a statistical model of rare 

disasters in the spirit of Nakamura, Steinsson, Barro, and 

Ursúa (2013) , who use a Bayesian framework to statis- 

tically distinguish disaster periods from normal periods 
d volatility ( NVIX 2 ). The dependent variables are annualized log excess 

regression. Rows show different forecasting horizons. Column 1 controls 

ith NVIX 2 . Column 2–8 excludes disasters. Observation t is excluded as 

plies a higher than 50% probability that the economy transitioned into 

redicted stock market variance and the predicted mills ratio using the 

price-to-earnings ratio to Model 2; adds NVIX 2 to Model 3; adds credit 

.4 as a control . The sample goes from January 1896 to December 2009 

are Newey and West corrected t-statistics with number of lags and leads 

fact that the regressors are generated. ∗ , ∗∗ , and ∗∗∗ indicate 10%, 5%, and 

VAR t−1 + β5 s t−1 × EVAR t−1 + β6 EMILLS t−1 ,τ + εt+ τ

 (5) (6) (7) (8) 

 .14 0 .15 0 .15 0 .16 0 .14 

 .36] [1 .43] [1 .15] [1 .02] [1 .35] 

 .31] [1 .38] [1 .09] [0 .99] [1 .31] 

 .63 0 .63 0 .63 1 .05 0 .63 

361 3/1361 3/1361 3/1088 3/1362 

 .07 0 .07 0 .03 0 .25 ∗ 0 .07 

 .76] [0 .84] [0 .23] [1 .80] [0 .82] 

 .75] [0 .83] [0 .23] [1 .61] [0 .81] 

 .77 0 .75 0 .74 3 .34 0 .74 

361 3/1361 3/1361 3/1088 3/1362 

 .11 0 .12 ∗ 0 .16 ∗ 0 .29 ∗∗∗ 0 .11 

 .55] [1 .72] [1 .80] [2 .80] [1 .59] 

 .48] [1 .63] [1 .54] [2 .17] [1 .52] 

 .95 2 .59 2 .59 5 .75 3 .01 

361 3/1361 3/1361 3/1088 3/1362 

 .13 ∗∗ 0 .15 ∗∗ 0 .15 ∗ 0 .31 ∗∗∗ 0 .14 ∗∗

 .01] [2 .21] [1 .95] [3 .45] [2 .03] 

 .86] [2 .02] [1 .67] [2 .53] [1 .88] 

 .07 5 .73 5 .67 14 .88 6 .13 

/1318 46/1318 46/1318 46/1055 46/1319 

 .14 ∗∗ 0 .16 ∗∗ 0 .15 ∗∗ 0 .29 ∗∗∗ 0 .14 ∗∗

 .22] [2 .44] [2 .10] [4 .08] [2 .23] 

 .03] [2 .20] [1 .78] [2 .82] [2 .04] 

 .41 10 .55 10 .41 21 .50 10 .46 

/1270 94/1270 94/1270 94/1019 94/1271 

3 4 5 6 

s Yes Yes Yes Yes 
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by measuring the behavior of annual consumption for a

large cross section of countries. We deliberately focus on a

framework in which the probability of a disaster transition

is constant to avoid biasing the predictability regressions. 

We extend the Nakamura, Steinsson, Barro, and Ursúa

(2013) framework to include stock market returns as an

additional signal about the state of the economy. Our

model interprets large negative returns as more likely to

be transitions into a disaster, if volatility has been previ-

ously low and if future periods exhibit a substantial and

persistent reduction in consumption growth. Large nega-

tive returns that are not followed by drops in economic

activity are interpreted as a mix of increases in volatility

and unusually large negative return realizations. 

A3.1. State dynamics 

Consumption of the representative agent follows a two

state Markov chain. Let states be s t ∈ {0, 1}, where s t =
1 denotes a disaster state. Log consumption and dividend

growth follow: 

c t+1 = μc (s t ) + σc ε
c 
t+1 (15)

and 

d t+1 = μd (s t ) + σd,t ε
d 
t+1 , (16)

with state transitions p ≡ P r(s t+1 = 1 | s t = 0) < P r(s t+1 =
1 | s t = 1) ≡ q . Disasters are persistent. Once in a disaster,

the economy is likely to stay in a disaster for a while. For

simplicity, we abstract from high-frequency covariation be-

tween dividends and consumption, which is very low in

the data. For our purposes, this assumption is harmless. 

In addition to the state s t , which is the only driver of

time variation in consumption growth, the economy fea-

tures variation in non-priced shocks to dividend volatility

σ d, t that evolves as 

σ 2 
d,t+1 = (1 − ρv ) σ

2 
d + ρv σ

2 
d,t + σv ε

v 
t+1 . (17)

Stochastic volatility provides an important competing

mechanism for the model to account for large return sur-

prises. 

We are interested in estimating I D t ≡ P r(s t = 1 | y T ) , the

probability the economy was in a disaster regime at time t ,

and I N→ D 
t+1 

≡ P r(s t+1 = 1 , s t = 0 | y T ) , the probability that the

economy transitioned into a disaster regime from t to t + 1 .

A3.2. Asset pricing framework 

We assume that the representative consumer in our

model has a stochastic discount factor given by M t+1 =
M(c t+1 , s t+1 , s t ) , which is consistent with both CRRA-

type preferences and with recursive preferences ( Epstein

and Zin, 1989; Weil, 1990 ). This specification implies that

the price-dividend ratio of the dividend process ( Eqs. (15 )

and (16) ) can be written as a function of the disaster state

π(s t ) = π̄e ψ(s t ) , with the normalization ψ(0) = 0 . Sub-

stituting this expression into the log return of the divi-

dend claim, we obtain the realized return dynamics. Using

the standard log-linearization around the average price-

dividend ratio, we obtain. 

log(R 

e 
t+1 ) = μd (s t ) + σd,t ε

d 
t+1 + κ1 ψ(s t+1 ) −ψ(s t ) + κ0 , 

(18)
where κ1 and κ0 are log-linearization constants. Real-

ized returns reflect permanent shocks to dividends εd 
t+1

and transitions into and out of disaster states κ1 ψ(s t+1 ) −
ψ(s t ) . 

Realized returns are informative about regime transi-

tions to the extent that the price-dividend ratio sensitiv-

ity to the disaster state ψ(1) − ψ(0) is large relative to

the volatility σ d, t . The model interprets large negative re-

turns as more likely to be a transition into a disaster, if

volatility has been previously low and if future periods ex-

hibit a substantial and persistent reduction in consumption

growth. Large negative returns that are not followed by

drops in economic activity are interpreted as a mix of in-

creases in volatility and unusually large negative dividend

innovations σd,t ε
d 
t+1 

. 

A3.3. Measurement 

We use a mixed-frequency approach adapted from

( Schorfheide, Song, and Yaron, 2013 ) to simultaneously use

economic data measured at different frequencies, which

allows us to use the best consumption growth data that

are available in each sample period. We model the true

monthly consumption growth as hidden to the econome-

trician and use annual consumption growth ( Barro and Ur-

sua (2008) ; from 1896 to 1959) as signals. Whenever data

on monthly consumption growth (National Institute of Pro-

fessional Accountants; from 1960 to 2009) are available,

we assume they measure monthly consumption growth

without error. 

We represent monthly time subscript t as t = 12( j −
1) + m, where m = 1 , . . . , 12 , j indexes the year, and m is

the month within the year. Annual consumption is the sum

of monthly consumption over the span of a calendar year,

 

a 
( j) 

= 

∑ 12 
m =1 C 12( j−1)+ m 

. Following ( Schorfheide, Song, and

Yaron, 2013 ). we represent annual consumption growth

rates as a function of monthly ones. We log-linearize this

relation around an average monthly growth rate C ∗ and

1define c as the percent deviations from C ∗: 

c a ( j) = 

1 

12 

12 ∑ 

m =1 

c 12( j−1)+ m 

. (19)

Because monthly consumption growth can be written

g c,t = c t − c t−1 , annual growth rates are 

g a c, ( j) = c a ( j) − c a ( j−1) = 

23 ∑ 

τ=1 

(
12 − | τ − 12 | 

12 

)
g c, 12 j−τ+1 . 

(20)

We measure realized variance using daily stock market

returns within month t , which satisfies 

rv ar t = σ 2 
d,t + σrv ar w 

rv ar 
t , (21)

where w 

rvar represents measurement error, the noise in re-

alized volatility due to the volatility of realized returns. 

A3.4. State space representation 

We now construct the system state evolution and mea-

surement equations. Define consumption growth shocks as

deviations from the conditional (on the economic regime
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s ) expected growth rate, εc 
t+1 

= g c,t+1 − μc (s t ) , and define 

the hidden state x t as 

x t = 

⎡ ⎢ ⎢ ⎢ ⎣ 

σ 2 
d,t 

− σ 2 
d 

εc 
t 

εc 
t−1 

... 

εc 
t−22 

⎤ ⎥ ⎥ ⎥ ⎦ 

. (22) 

The hidden state’s evolution can be represented as an au- 

toregressive process given by 

x t+1 = Ax t + Cεt+1 , (23) 

where ε = [ εc , εd , εv ] . The measurement vector 

y t+1 = 

⎡ ⎢ ⎣ 

log(R 

e 
t+1 ) − log(R 

f 
t+1 

) 
rv ar t+1 

c m 

t+1 

c a t+1 

⎤ ⎥ ⎦ 

(24) 

can be represented as a function of the hidden states and 

the hidden disaster regimes as 

H t+1 × y t+1 = H t+1 × F 
({ s t− j } 11 

j=0 

)
+ Gx t + B (x t ) εt+1 

+ Dw t+1 , (25) 

where the matrix H t+1 selects the components of the mea- 

surement vector that are observed in a particular sample 

period. For example, annual consumption growth is ob- 

served only at the end of the year, so H t+1 selects the 

fourth row only when t + 1 is a December month and the 

annual consumption growth data are available. Monthly 

consumption is available only after 1959, so the matrix 

H t+1 selects the third row if t + 1 is in a year after 1959. 

The vector F ({ s t− j } 11 
j=0 

) adds the expected value of each of 

the measurement variables as function of the hidden eco- 

nomic states s t . The matrix G maps hidden state variables 

into the observable variables, the vector ε groups economic 

shocks, and the vector w t+1 groups measurement errors. 

A3.5. Bayesian filtering 

Our goal is to filter the time series of realized disasters. 

We keep the estimation simple by calibrating the param- 

eters and using a Bayesian approach to infer state transi- 

tions. Given the calibrated parameters and the observed 

data Y = { y t } T t=1 , we estimate the most likely trajectory 

of the disaster state S = { s t } T t=1 and the hidden variables 

X = { x t } T t=1 
, 

p(S, X | Y ) ∝ p(Y | X, S) p(X | S) p(S) . (26) 

Bayesian inference requires the specification of a prior 

distribution p ( S ), which we choose consistent with the 2% 

per year probability of a disaster event estimated by Barro 

and Ursua (2008) using cross-country data. 

We use a Gibbs sampler to construct the posterior by 

repeating the following two steps: 

1. Draw S (i ) ∼ p(S| X (i −1) , Y ) 

2. Draw X 

( i ) ∼ p ( X | S ( i ) , Y ) 

We construct p ( X | S ( i ) , Y ) using a Kalman smoother. The 

Gibbs sampler generates a sequence of random variables 

that converges to the posterior p ( S, X | Y ). 
A3.6. Calibration 

Table A.2 summarizes the calibrated parameters. Most 

of these are easily estimated from the data. We estimate 

the parameters driving the hidden volatility process by 

first fitting an AR(3) to realized variance and then esti- 

mating an AR(1) on the one-step-ahead variance predic- 

tor. The realized variance measurement error σ rvar is con- 

structed from the forecasting error of this specification. 

Consumption growth is calibrated to have annual volatil- 

ity of 2% and annual growth rate of 3.5% in good times 

and −2% during disasters. Disasters are assumed to strike 

with a 2% probability per year, and disasters end within 

a year with a 10% probability (this number pins down q ). 

The log-linearization constant κ1 is constructed using the 

average price-dividend ratio in the postwar sample. We 

set ψ(s = 1) to be consistent with a stock market drop 

on a normal times to disaster transition of −25% and set 

the quantity κ0 + μd (s t = 0) − log(R 
f 
t ) to fit the equity pre-

mium during the postwar period. The change in dividend 

growth is chosen so that μd,t (s = 1) − μd,t (s t = 0) lines up 

with the consumption drop during a disaster. 

A4. Truncation 

Excluding disasters can lead to biases if our predictor 

forecasts stock market variance. Because the timing of dis- 

aster realizations is greatly influenced by the realization 

of abnormally low returns, a plausible alternative model 

could feature time-varying volatility (at least in the pre- 

war sample), but not time-varying disaster risk. Under this 

alternative model, our procedure would be classifying as 

disasters periods of high variance that turn out to have 

low return realizations, and a variable that predicts vari- 

ance (but not returns) could show up as predicting returns 

if we exclude disaster periods from the regressions. 

According to this truncation mechanism, it is enough to 

control for the forecast of the truncated mean of the re- 

turns distribution (the Mills ratio). If return predictability 

excluding disasters is only a result of time-varying trunca- 

tion, a predictor of the Mills ratio would completely drive 

out NVIX. To be consistent with the specification we use 

when forecasting disasters, our specification controls for 

the predicted Mills ratio using several alternative variables. 

Table A.3 presents the results. Neither the coefficients nor 

their statistical significance is impacted by including the 

relevant Mills ratio forecast. As before, the most conserva- 

tive specification is Model 4, which includes NVIX, price- 

to-earning ratio, and three lags of realized variance. As be- 

fore, including credit spreads make the results stronger. 

Here we describe formally the logic of this truncation 

adjustment. Consider the following alternative model fea- 

turing time-varying volatility and constant expected re- 

turns: 

σ 2 
t+1 = μσ + ρσσ 2 

t + ω 

√ 

σ 2 
t H σ w t+1 (27) 

and 

r t+1 = μr + σt+1 H r w t+1 . (28) 

In this counterfactual economy, there is no predictabil- 

ity, and there is no sense that very low returns are spe- 

cial as there are no special compensation for disasters. But 
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Table A4 

Horse races with financial predictors. 

Reported are monthly return predictability regressions based on news 

implied volatility (NVIX) and controls. The dependent variables are an- 

nualized log excess returns on the market index. Each row and each 

column represents a different regression. Rows show different forecast- 

ing horizons. The sample is January 1945 to December 2009. The vari- 

able E 
[
V IX 2 t−1 | VAR 

]
is the variance-based implied volatility (VIX), the pre- 

dicted value of VIX 2 using the contemporaneous variance plus two addi- 

tional lags. The model is estimated in the sample when VIX is available 

(1990–2009). t NW are Newey and West corrected t-statistics with num- 

ber of lags and leads equal to the size of the return forecasting window. 

t GR t-statistics correct for the fact that the regressors are generated. ∗ , ∗∗ , 

and ∗∗∗ indicate 10%, 5%, and 1% significance levels, respectively. 

r e t → t + τ = β0 + β1 NV IX 2 t−1 + 

∑ N 
j=2 β j X j,t−1 + εt+ τ

τ (1) (2) (3) (4) (5) 

1 β1 0 .15 0 .20 0 .20 0 .19 

t NW [0 .99] [1 .29] [1 .28] [1 .19] 

t GR [0 .98] [1 .26] [1 .24] [1 .16] 

R 2 0 .35 0 .40 0 .45 0 .81 0 .50 

3 β1 0 .12 0 .14 0 .14 0 .13 

t NW [0 .81] [1 .10] [1 .08] [0 .99] 

t GR [0 .80] [1 .08] [1 .06] [0 .97] 

R 2 0 .56 0 .60 0 .84 1 .80 1 .38 

6 β1 0 .18 ∗∗ 0 .21 ∗∗ 0 .21 ∗∗ 0 .20 ∗∗

t NW [2 .48] [2 .38] [2 .35] [2 .19] 

t GR [2 .42] [2 .17] [2 .16] [2 .03] 

R 2 2 .37 2 .44 3 .11 5 .06 3 .42 

12 β1 0 .16 ∗∗∗ 0 .18 ∗∗∗ 0 .18 ∗∗∗ 0 .17 ∗∗

t NW [3 .21] [2 .64] [2 .62] [2 .47] 

t GR [3 .08] [2 .37] [2 .36] [2 .24] 

R 2 3 .31 3 .44 4 .08 8 .56 6 .30 

24 β1 0 .14 ∗∗∗ 0 .17 ∗∗∗ 0 .17 ∗∗∗ 0 .15 ∗∗∗

t NW [3 .58] [2 .80] [2 .81] [3 .05] 

t GR [3 .40] [2 .49] [2 .49] [2 .65] 

R 2 5 .02 5 .32 5 .33 16 .45 13 .02 

Observations 779 779 779 779 779 

Controls 

NV IX 2 t−1 Yes Yes Yes Yes No 

E 
[
V IX 2 t−1 | VAR 

]
No Yes Yes Yes Yes 

Creditspread t−1 No No Yes Yes Yes 

( P 
E 
) t−1 No No No Yes Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

suppose in this environment we use threshold r to split

the sample into disaster periods and normal times. In this

case, we would have average returns in normal times given

by 

E[ r t+1 | r t+1 ≥ r , σt+1 ] = μr +σt+1 E 

[ 
w r,t+1 | w r,t+1 ≥ r − μr 

σt+1 

] 
= μr + σt+1 λ

(
r − μr 

σt+1 

)
, (29)

where λ( x ) is known as the Mills ratio. In the context of

our exercise, we know exactly the threshold r . If NVIX t

predicts future volatility, the truncation effect leads us to

find that NVIX predicts returns when in fact it does not. In

this case, conditional expectations are given by 

E[ r t+1 | r t+1 ≥ r | NV IX 

2 
t , σ

2 
t ] 

= μr + E 

[ 
σt+1 λ

(
r − μr 

σt+1 

)
| NV IX 

2 
t , σt 

] 
. (30)

The above expression tells us that test the time-varying

rare disaster story against the truncation story it suffices to

control for the best predictor of the quantity σt+1 λ( r −μr 
σt+1 

) .

The essence of this test is the restriction imposed by the
truncation hypothesis that any return predictability has to

happen through the prediction of the Mills ratio multiplied

by the volatility. That is, we first estimate 

σt+1 λ
(

r − μr 

σt+1 

)
= �X t + εt , (31)

where X t is a set of predictors (NVIX inclusive) and the

constant. We then run 

r e t+1 = β0 + β1 NV IX 

2 
t + β2 ̂

 �X t . (32)

Under the null that all predictability is driven by trun-

cation, we have β1 = 0 and β2 = 1 . 

For multi-period return forecasts, a observation is ex-

cluded as long there is at least one disaster transition in

the forecasting window. To derive the truncation bias, for-

mally write multi-period expected returns as 

E 

[∑ τ
i =1 r t+ i 
τ

|{ r t+ z ≥ r | 1 ≤ z ≤ τ } , X t 

]
= 

1 

τ

τ∑ 

i =1 

E [ E [ r t+ i | r t+ i ≥ r ] | X t ] 

= 

1 

τ

τ∑ 

i =1 

E[ σt+ i λ( 
r − μr 

σt+ i 
) | X t ] . (33)

We implement this by constructing multi-period forecasts

of the Mills ratio, 

1 

τ

τ∑ 

i =1 

σt+ i λ

(
r − μr 

σt+ i 

)
= �τ X t + εt+ τ , (34)

and using EMILLS t−1 ,τ = 

ˆ �τ X t−1 as a control variable. 

A5. Horse races with financial variables 

We directly compare NVIX against different predictors.

If the concerns encoded in NVIX are the same concerns

reflected in the other predictors, then the predictor mea-

sured with more noise should be driven out of the regres-

sion. If not driven out completely, We would expect the

coefficient magnitude to decrease. 

The results in Table A.4 show remarkably stable coeffi-

cients across specifications, suggesting that NVIX captures

additional information relative to what is reflected in a

variance-based measure of VIX, the credit spread, or the

price-to-earnings ratio. Comparing r-squared across hori-

zons, the predictive power of NVIX and the other variables

roughly add up. At the yearly horizon, NVIX has a (univari-

ate) r-squared of 3.3% and a marginal contribution of 2.3%

(Column 4 minus Column 5 is 8.6%–6.3%). All the other

variables together have an r-squared of 6.3% with marginal

contribution of 5.3% (8.6%–3.3%). This pattern strongly sug-

gests that these variables measure different things. 
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