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A long-term investor who ignores variation in volatility gives up the equivalent of 2.4% 

of wealth per year. This result holds for a wide range of parameters that are consistent 

with US stock market data, and it is robust to estimation uncertainty. We propose and 

test a new channel, the volatility composition channel, for how investment horizon inter- 

acts with volatility timing. Investors respond substantially less to volatility variation if the 

amount of mean reversion in returns disproportionally increases with volatility and also if 

mean reversion happens quickly. We find that these conditions are unlikely to hold in the 

data. 
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1. Introduction 

In October 2008, stock market volatility spiked to very

high levels at the same time that a steep drop in the stock
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market made valuation ratios appear attractive. This pre-

sented investors with a dilemma: was the potential in-

crease in expected return implicit in the lower valuation

ratios sufficient compensation for the unprecedented levels

of volatility? Answering this question is relevant not only

for extreme periods of volatility like those seen in 2008

but also much more generally as the negative correlation

between volatility and realized returns is a salient feature

of stock markets. 

A common view among many practitioners and aca-

demics is that the low valuations provide more than

adequate compensation for investors that are able to

withstand the heightened short-term market volatility, i.e.

investors with long investment horizons. For example,

in response to the high volatility period in 2008 John

Cochrane suggests: “If you . . . have a longer horizon than

the average, it makes sense to buy,” a sentiment echoed

by Warren Buffet around the same time. 1 This view has

also translated into standard financial advice. For exam-

ple, Vanguard—a leading mutual fund company—argue that
1 See Cochrane (2008a) and Buffett (2008) . 
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long-term oriented investors are better off ignoring move- 

ments in volatility. 2 The argument is that, since volatility 

is typically associated with market downturns, and down- 

turns are attractive buying opportunities for those with 

long horizons, it is not wise to sell when volatility spikes. 

Further, and most importantly, because of mean rever- 

sion in stock returns, investors with long horizons should 

not view increases in volatility as an increase in risk—the 

idea is that an increase in volatility makes stock prices 

more uncertain tomorrow but not more uncertain over 

long horizons that these investors care about. Thus, the 

argument is that periods of high volatility can be much 

more attractive to long-horizon investors relative to short- 

horizon investors. Empirically, there is direct evidence that 

investors seem to follow this advice: investors with longer 

horizons do in fact react much less to volatility changes 

than those with short horizons. 3 

The goal of our paper is to provide a structural quan- 

titative framework for thinking through these facts and 

for evaluating the conventional wisdom. While an exten- 

sive literature on portfolio choice shows that long-horizon 

investors may indeed behave very differently than those 

with a short horizon, this paper is the first to comprehen- 

sively study the portfolio response to volatility when both 

expected returns and volatility are allowed to vary over 

time in a way that is consistent with the main empirical 

facts about the US market portfolio. 

Specifically, we answer three questions: (1) how much 

volatility timing should long-term investors do, if any; (2) 

what are the utility benefits of volatility timing; and (3) 

what features of the return process are critical for under- 

standing volatility timing? We study the portfolio problem 

of a long-lived investor that allocates her wealth between 

a risk-less and a risky asset in an environment where both 

volatility and expected returns are time varying and where 

the parameters governing these processes are estimated 

using US data from 1925 to 2016. We provide comprehen- 

sive, quantitative answers that show the effects of investor 

horizon as well as which parameters of the return dynam- 

ics are most relevant for our conclusions. 

We begin our analysis by estimating a rich model 

for the dynamics of excess stock returns using simulated 

method of moments (SMM) and the last 90 years of stock 

return data. Our process for returns allows for (poten- 

tially independent) time variation in both volatility and ex- 

pected returns. Allowing for both features is essential to 

capture the common argument that high volatility peri- 

ods are “buying opportunities” for long-horizon investors. 

It also enables us to fit the most salient features of the 

US data, i.e., that both expected returns and volatility vary 
2 For the Vanguard reference see “What to do during market volatility? 

Perhaps nothing.” See https://personal.vanguard.com/us/insights/article/ 

market- volatility- 082015 . In the Internet Appendix, we reference similar 

advice from Fidelity, the New York Times, and many other sources. The 

Internet Appendix is available on the Journal of Financial Economics web- 

site. 
3 Nagel et al. (2016) show that during the 20 08–20 09 period, older in- 

vestors (those with a shorter investment horizon) sold much more heav- 

ily in response to increases in volatility compared to younger investors 

(those with a longer investment horizon), even when controlling for a 

host of other factors. 
significantly over time ( Campbell and Shiller, 1988; Schw- 

ert, 1989 ) but are not strongly related to each other at 

short horizons, despite the fact that increases in volatil- 

ity are associated with market downturns ( Glosten, Jagan- 

nathan and Runkle, 1993 ). Finally, it allows us to com- 

pare the utility benefits from timing variation in volatility 

to the long literature on the utility benefits of timing ex- 

pected returns (for example, Campbell and Viceira, 1999; 

Barberis, 20 0 0; Wachter, 20 02 ). We use both the param- 

eter point estimates and the associated estimation uncer- 

tainty to consider a range of parameters governing the re- 

turn process that are likely given the data. 

In keeping with the portfolio choice literature, our anal- 

ysis is partial equilibrium. That is, we leave open the ques- 

tion of what determines the joint dynamics of expected 

returns and volatility that we recover from the data, but 

given these dynamics, we study how an investor with stan- 

dard preferences should invest. Specifically, we focus on 

the portfolio problem of an infinite-lived investor with re- 

cursive preferences ( Epstein and Zin, 1989 ) with unit elas- 

ticity of intertemporal substitution (EIS). These preferences 

allow us to conveniently control the horizon of the in- 

vestor, i.e., the timing of her consumption, while at the 

same time keeping the environment stationary. These pref- 

erences should capture individuals and institutions that 

target a constant expenditure share of their wealth (e.g., 

university endowments, sovereign wealth funds, or pen- 

sion funds). 

Our main finding is that the optimal response of a 

long-term investor strongly depends on the composition 

of volatility shocks. If the variance of expected and un- 

expected returns vary proportionally, as commonly as- 

sumed in the empirical literature ( Campbell et al., 2016 ), 

long-horizon investors should substantially decrease their 

weight in the stock market after an increase in volatil- 

ity. A strategy that ignores variation in volatility leads to 

large utility losses. This result fills an important gap in 

the literature. While previous work ( Chacko and Viceira, 

20 05; Liu, 20 07 ) shows that the volatility hedging demand 

is small relative to the myopic demand, their framework 

cannot speak directly to the argument that high volatil- 

ity periods are “buying opportunities” for long-horizon in- 

vestors. Specifically, because expected returns must be an 

affine function of stock market variance in their frame- 

work, their model will either imply too little time varia- 

tion in expected returns or that the risk-return trade-off is 

too strong. Both possibilities are inconsistent with the data. 

Therefore, our paper is the first to study the portfolio of a 

long-term investor in framework that is flexible enough to 

fit the most important facts about the aggregate stock mar- 

ket. 

We then allow for time variation in the composition 

of volatility shocks. Specifically, we show that if variation 

in volatility is driven by the volatility of expected returns, 

then the optimal portfolio can become much less sen- 

sitive to volatility variation than implied by variation in 

the risk-return trade-off. Intuitively, prices become more 

volatile only in the short term but not more volatile in 

the long term because the higher volatility of expected 

returns leads to an increased degree of mean reversion. 

Therefore when volatility is very low, returns are entirely 

https://personal.vanguard.com/us/insights/article/market-volatility-082015
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4 This result contrasts to the gains from expected return timing that are 

much more sensitive to parameter uncertainty (see Barberis, 20 0 0; Pástor 

and Stambaugh, 2012 ). 
driven by permanent shocks, i.e., there is no mean re-

version in returns and little return predictability. In that

case, long-term and short-term investors will choose sim-

ilar stock allocations. However, in high volatility times,

stock returns become strongly mean reverting because the

volatility of expected returns increases. In these periods,

a short-term investor sees a reduction in the risk-return

trade-off and wants to sell. The long-term investor weighs

two effects: the myopic desire to sell due to the lower risk-

return trade-off, but also the large hedging demand that

now arises from mean reversion. Thus, the long-term in-

vestor will react less strongly to the increase in volatility

in this case because it is accompanied by an increase in

the degree of mean reversion in returns. This mechanism

can be thought as the time-series counterpart of the cross-

sectional “bad” beta in Campbell and Vuolteenaho (2004) ,

and it is consistent with Cochrane (2008a) and Buffett’s

(2008) argument that the huge spike in volatility in the fall

of 2008 was mostly about “short-term volatility,” i.e., in-

creases in volatility that do not change the long-term dis-

tribution of asset prices. 

Quantitatively, we show that this mechanism requires

not only that volatility variation to be completely driven by

variation in the volatility of mean-reverting shocks but also

that mean reversion in returns happens fairly quickly. That

is, shocks to expected returns are not too persistent. We

show that absent these two conditions, long-term investors

still find it optimal to time volatility. 

We then use the data to put empirical bounds on the

amount of mean reversion in returns coming from high

versus low volatility periods. Specifically, we show em-

pirically that the autocorrelation of stock market returns

at a one-year horizon is not different in high versus low

volatility periods. In the model, if there was substantially

more mean reversion in returns during high volatility peri-

ods, and this mean reversion happened fairly quickly, then

there would indeed be a large disparity in return auto-

correlations, with a more negative return autocorrelations

during high volatility periods. Importantly, our test only re-

jects the joint hypothesis that volatility is driven by the

volatility of expected return shocks and expected returns

have low persistence. This restriction on how much mean

reversion and volatility interact is sufficient to determine

that a long-term investor should still respond relatively ag-

gressively to changes in volatility. 

Our results are important for investors such as pension

funds, endowments, sovereign wealth funds, individuals

saving for retirement, or other long-term investors as they

provide guidance in how to optimally respond to volatil-

ity. Specifically, we show that the optimal timing strategy

is closely approximated by a strategy that is affine in the

mean-variance portfolio μt 

σ 2 
t 

. This simple strategy achieves

nearly the same utility as the fully optimal strategy so that

the optimal portfolio can be approximated fairly accurately

by the myopic portfolio plus a constant weight investment

in the buy-and-hold portfolio. This affine form for the port-

folio strategy holds for a wide range of parameters that are

likely given the data. 

We next evaluate the utility benefits from volatility

timing, where we define a volatility timing strategy as a
strategy that only uses conditional information on volatil-

ity but not expected returns. Specifically, we restrict our-

selves to constant weight combinations of the buy-and-

hold portfolio and the volatility managed portfolio from

Moreira and Muir (2017) , i.e., strategies that are affine in
μ

σ 2 
t 

where μ sets the expected return to its unconditional

mean. We compare the utility of this strategy to the fully

optimal strategy, w 

∗, that conditions on both expected re-

turns and volatility and also to the naive buy-and-hold

strategy that does not do any timing. We find very large

gains from volatility timing, which we measure using an

annualized per period fee the investor is willing to pay to

switch from a static buy-and-hold portfolio to a volatility

timing portfolio. For the baseline estimates (no variation in

the composition of volatility), the naive buy-and-hold in-

vestor would be willing to pay a 2.36% per period annual-

ized fee to volatility time. In wealth equivalent terms this a

60% increase relative to the buy-and-hold portfolio. These

gains are about 80% of the total gain of switching from the

buy-and-hold strategy w to the fully optimal strategy w 

∗

(i.e., a strategy that also conditions on expected returns as

well as volatility). Thus, ignoring variation in volatility is

very costly, and the benefits to timing volatility are signif-

icantly larger than the benefits to timing expected returns.

We then show that these gains survive even after we

take into account the parameter uncertainty implied by

our estimation procedure for return dynamics, 4 estimate

the model at different frequencies to allow for the pos-

sibility that there are persistent movements in volatility,

and use different proxies for expected returns. 

What does the conventional view highlighted earlier

miss? First, while it is true that valuation ratios tend to

go down when volatility increases, signaling higher ex-

pected returns ahead, the conventional view misses that

this increase in expected returns is much more persis-

tent than the increase in volatility. Investors can avoid the

short-term increase in volatility by first reducing their ex-

posure to equities when volatility initially increases and

capture the increase in expected returns by coming back to

the market as volatility comes down. In other words, val-

uation ratios will remain attractive for an extended period

of time while volatility is shorter lived, and the long-term

investor can exploit this large difference in persistence.

Second, time variation in expected returns implies that re-

turn volatility over short holding periods will overstate the

amount of risk that an investor with a long-horizon faces.

That is, a fraction of return variation is purely transitory

and therefore is not risk for an investor with long enough

investment horizons. The conventional view correctly uses

this fact to argue that long-term investors should invest

more in equities than short-term investors ( Campbell and

Viceira, 1999 ). However, this level effect on portfolios is

often also interpreted to mean long-term investors should

care less about volatility variation. This is a fallacy because

long-term investors already have a higher exposure to eq-

uities due to mean reversion. We show that it is only if
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there is relatively more mean reversion in returns when 

volatility increases that long-horizon investors will react 

differently. That is, the com position of permanent versus 

transitory shocks to returns must shift as volatility changes 

(we call this the volatility composition channel). 

Our paper builds on the prolific literature on long- 

term asset allocation. Starting with the seminal work of 

Samuelson (1969) and Merton (1971) , this literature has 

studied carefully the implications of mean reversion for 

portfolio choice. Campbell and Viceira (1999) , Barberis 

(20 0 0) , and Wachter (20 02) study the optimal portfolio 

problem in the presence of time-varying expected returns. 

The key result is that the presence of mean reversion 

in market returns imply investors with longer horizons 

should invest more in the stock market. In addition, this 

literature argues that market dips are good buying oppor- 

tunities ( Campbell and Viceira, 1999 ). An important caveat 

is that parameter uncertainty can attenuate these horizon 

effects (see Barberis, 20 0 0; Xia, 2001 ). 

Less studied, but we think equally important, is time 

variation in second moments. Chacko and Viceira (2005) , 

Liu (2007) , and Zhou and Zhu (2012) study variation in 

volatility, and Buraschi, Porchia and Trojani (2010) study 

variation in correlations. This literature finds only mod- 

est deviations from myopic behavior. The absence of large 

hedging demands in these papers suggest that volatility 

timing as in Moreira and Muir (2017) is desirable, and in- 

vestment horizon effects are not first order. However, these 

papers abstract from (independent) variation in expected 

returns. Thus, they cannot speak directly to the conven- 

tional wisdom that volatility spikes are mostly “buying 

opportunities” or that return volatility is mostly due to 

transitory shocks that mean revert over the long run. It is 

precisely this gap that this paper fills. Consistent with the 

intuition behind the traditional view, we show that there is 

an important interaction between volatility and expected 

return variation through the volatility composition chan- 

nel. 

Related papers that account for both volatility and 

expected returns include Shanken and Tamayo (2012) , 

Collin-Dufresne and Lochstoer (2017) , and Johannes, 

Korteweg and Polson (2014) . Collin-Dufresne and Lochstoer 

(2017) have a time-varying risk-return relationship in a 

general equilibrium setting and point out that long-term 

investors only want to buy at “low prices” if effective risk 

aversion, rather than risk itself, has increased to cause the 

fall in prices. Johannes et al. (2014) solve a Bayesian prob- 

lem that accounts for time-varying volatility when forming 

out of sample expected return forecasts. 

Finally, we build on the results in Fleming, Kirby and 

Ostdiek (2001) , Fleming, Kirby and Ostdiek (2003) , and 

Moreira and Muir (2017) who study volatility timing em- 

pirically in the context of a short-term mean-variance in- 

vestor. We go well beyond the results in these papers 

by solving for the optimal portfolio for long investment 

horizons, estimating utility gains for long-horizon investors 

along with associated uncertainty surrounding such gains, 

considering parameter uncertainty in estimating expected 

returns and volatility (which we show is important), and 

studying the interaction of volatility and mean reversion 

in returns and showing a novel channel through which this 
feature matters for an investors’ horizon, something argued 

to be important by academics and practitioners and some- 

thing that appears empirically relevant in understanding 

who responds most to volatility ( Nagel et al., 2016 ). 

The paper proceeds as follows. Section 2 describes the 

process for returns and investor preferences. Section 3 an- 

alyzes the optimal portfolio and associated utility gains 

from volatility timing. Section 4 allows for time variation 

in the composition of volatility shocks. Section 5 stud- 

ies robustness of our results to parameter uncertainty. 

Section 6 contains extensions to our main results. 

Section 7 concludes. 

2. The portfolio problem 

We study the problem of a long-horizon investor and 

investigate how much they should adjust their portfolio to 

changes in volatility. 

2.1. Investment opportunity set 

We assume there is a riskless bond that pays a constant 

interest rate r and a risky asset S t , with dynamics given 

by 

dS t 

S t 
= ( r + μt ) dt + σt dB 

S 
t , (1) 

where S t is the value of a portfolio fully invested in the 

asset and reinvests all dividends. We model expected (ex- 

cess) returns as an autoregressive process with stochastic 

volatility, 

dμt = κμ( μ − μt ) dt + σμσt dB 

μ
t . (2) 

Notice that this means that the volatility of shocks to 

expected returns scale up and down proportionally with 

shocks to realized returns. In later sections, we consider 

cases in which we break this proportionality. We write log 

volatility f ( σ 2 
t ) = ln 

(
σ 2 

t − σ 2 
)

as an auto-regressive pro- 

cess with constant volatility, 

df ( σ 2 
t ) = κσ

(
f − f ( σ 2 

t ) 
)
d t + νσ d B 

σ
t , (3) 

where the parameter σ 2 controls the lower bound of the 

volatility process. This lower bound is important in elimi- 

nating near arbitrage opportunities (i.e., infinite Sharpe ra- 

tios). Our assumption about a lognormal volatility process 

should not be seen as crucial, although it allows for eas- 

ier solutions in our numerical exercise and a better fit for 

the unconditional distribution of volatility. Results using a 

square root process ( Heston, 1993; Cox, Ingersoll and Ross, 

1985 ) for volatility along the lines of Chacko and Viceira 

(2005) are similar. 

Shocks to realized returns, expected returns, and 

volatility are thus captured by the Brownian motions dB S t , 

dB 
μ
t , and dB σt . We now specify the correlation of these 

shocks. First, we impose 

E t [ d B 

μ
t d B 

S 
t ] = −σμ

κμ
. (4) 

Note that the correlation between between expected re- 

turns and realized returns is not a free parameter. The cor- 

relation − σμ
κμ

implies that shocks to expected returns in- 

duce an immediate change in prices so that in the long 
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run, it exactly offsets expected return innovations, i.e., it

imposes that expected return shocks have no effect on the

long-run value of the asset. We make this choice to em-

phasize that we want to consider transitory shocks to re-

turns that have no long-run impact; however, we also note

that if one freely estimates this correlation in the data,

one recovers roughly this value ( Cochrane, 2008b ). Hence,

it is not an overly restrictive assumption. This correlation

also defines the share of “discount rate shocks” that drive

returns—that is, when the correlation is one, then all vari-

ation in returns is driven by discount rate shocks, and

when it is zero, expected return shocks play no role. We

label this correlation E t [ d B 
μ
t d B S t ] = −α1 / 2 

μ . We thus write

σμ = α1 / 2 
μ κμ and focus on estimating αμ and κμ in the

data, as these parameters have direct economic interpreta-

tions as the share and persistence of discount rate shocks. 

We next specify the remaining correlations 

E t [ d B 

σ
t d B 

μ
t ] = ρσ , μ, (5)

E t [ d B 

σ
t d B 

S−μ
t ] = ρσ , S , (6)

where dB 
S−μ
t captures shocks to returns that are orthogo-

nal to discount rate shocks, i.e., cash flow shocks. 5 The cor-

relation between volatility and expected and realized re-

turns are free parameters that must satisfy ρ2 
σ , S 

+ ρ2 
σ , μ ≤ 1

so that all Brownian motions are well defined. 6 Finally, we

set the unconditional mean of the log volatility process

f ( σ 2 
t ) to f = ln ( σ 2 − σ 2 ) − ν2 

σ
2 κσ

. 

This parametrization leads to a natural interpretation of

the parameters: μ is the average expected excess return

of the risky asset, σ 2 is the average conditional variance of

returns, ν2 
σ is the conditional variance of log variance, ρσ , μ

controls the covariance between variance and discount rate

shocks, and ρσ ,S controls the covariance between variance

and cash flow shocks (return innovations uncorrelated to

innovations in discount rates). Throughout, we adopt the

language from the literature ( Campbell and Shiller, 1988;

Campbell, 1996; Campbell and Vuolteenaho, 2004 ), using

“cash flow shocks” to denote permanent shocks to returns

that are uncorrelated to shocks that affect expected re-

turns. Next, αμ denotes the discount rate share of return

variation. 

The stochastic environment described by Eqs. (1) and

(2) allows for variation in volatility, variation in expected

returns (i.e., mean reversion in returns), and flexible time-

series relation between expected returns and volatility

( ρσ , μ). The latter governs the risk-return trade-off relation-

ship between variance and the risk premium. In the In-

ternet Appendix, we discuss even more sophisticated and

flexible ways of modeling this relationship. In particular,

we discuss allowing expected returns to more directly de-

pend on volatility by having two frequencies for expected
5 The Brownian motion representing the cash flow shocks can be con- 

structed as dB 
S−μ
t = 

d B S t + 
√ 

αμd B 
μ
t √ 

1 −αμ
. 

6 We specify these correlations as constant. In particular, we don’t con- 

sider time variation in the correlation between volatility and expected re- 

turns. See Collin-Dufresne and Lochstoer (2017) for a case in which this 

time variation plays a role in a general equilibrium model for long-term 

portfolio choice. 

 

 

returns: a shorter frequency component that is related to

volatility and a slower moving component (specifically, we

write μt = x t + bσ 2 
t , where b governs the risk-return rela-

tion, and x and σ 2 are allowed to move at different fre-

quencies). It turns out, however, that because the risk-

return relation is empirically weak, we do not lose much

by incorporating a less rich relationship between expected

returns and variance. In fact, we will show in our estima-

tion that the current model is able to capture the essential

empirical moments relating risk and return in the time se-

ries, meaning our modeling of the risk-return trade-off is

appropriate. Finally, in later sections we also allow for vari-

ation in the composition of volatility shocks (that is, we

consider the case in which αμ is not constant but varies

over time). This will allow for variation in the share of re-

turn volatility due to discount rate shocks. 

Together, these ingredients are novel and essential to

study the optimal response to volatility variation. Earlier

work on portfolio choice has studied expected return vari-

ation, volatility variation, or volatility variation with a con-

stant risk-return trade-off. Examples of work that study

volatility timing in a dynamic environment are Chacko and

Viceira (2005) and Liu (2007) . But these papers do not

study the interaction of discount rate and volatility shocks

that are the basis for the conventional view that long-

horizon investors should ignore volatility variation. 

2.2. Estimation of parameters 

We estimate the model using SMM ( Duffie and

Singleton, 1993 ) and use the estimated parameters in

Table 1 to discuss the model implications for portfolio

choice. We use an optimal weight matrix as in Bazdresch

et al. (2018) who find an SMM estimator with the opti-

mal weight matrix has much better finite sample prop-

erties compared to an identity matrix. We separately cal-

ibrate the real riskless rate ( r = 1% ) that reflects the US

experience in the postwar sample. We also calibrate the

volatility lower bound to ( σ = 7% ) based on the data. 7 

Our goal is for the model to match the key dynamic

properties of US stock returns shown in the empirical fi-

nance literature. With that in mind, we use the US market

excess return from 1926–2015 from Ken French. We de-

scribe our estimation in more detail in the Internet Ap-

pendix. We briefly describe our choice of moments and

how these moments identify the parameters of interest. 

We use daily data to construct a monthly series of re-

alized volatility, RV , which we use to match the properties

of volatility in the model. Specifically, we will simulate the

model at daily frequency and compute realized volatility

in the same manner as in the data, thus the true volatil-

ity process is unobserved. We then aggregate to monthly

frequency in the data and model to match all moments.

Finally, we bring in additional monthly data on the US div-

idend price ratio from Robert Shiller to match moments
7 Here we use that the minimum of the Chicago Board Options Ex- 

change Volatility Index (VIX) from 1990–2015 is 10%, so our 7% for the 

longer 90-year sample is reasonable. Note we use VIX to calibrate this 

number, rather than realized volatility, because realized volatility is noisy 

and hence would not properly measure a lower bound for true volatility. 
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Table 1 

Estimates for the stochastic processes. 

Panel A provides the calibrated parameters; Panel C provides the estimated parameters. Panel B pro- 

vides the matched moments in the data and in the model. Parameters are estimated using SMM. We 

use monthly data on the market portfolio for 1926 to 2015. The standard errors uses the influence func- 

tion approach described in Erickson and Whited (2002) to estimate the joint distribution of moments 

from the data. In Panel C, we also use the influence function approach to estimate the joint distri- 

bution of estimated parameters. Specifically, the parameter standard errors are constructed as follows: 

we sample 1,0 0 0 moment realizations from the estimated moment distribution, reestimate the model 

for each of the moment realizations, and then compute the parameter standard deviations across mo- 

ment realizations. Note that RV t = 

∑ 1 
d= 1 / 22 ( R 

e 
t+ d − ( 

∑ 1 
d= 1 / 22 R 

e 
t+ d / 22 )) 2 is the daily realized variance in 

month t , where R e 
t+ d is the excess return on the market on date t + d. R e 

t , t + T is the cumulative excess 

return on the market between dates t and T . The alpha of the volatility managed portfolio α( SR t → R t ) 

is the intercept of a regression of a volatility managed (excess) portfolio on the (excess) portfolio itself 

(see Moreira and Muir, 2017 , for details). See text for more details. 

Panel A: Parameters 

Parameter Description Value 

r Riskfree rate 0.01 

σ Volatility lower bound 0.07 

Panel B: Estimated moments 

Moment Description Data Model S.E. 

mean ( R t , t + 1 ) Equity premium (ann.) 0.078 0.074 0.017 

mean ( RV t ) Avg. realized variance (ann.) 0.028 0.032 0.006 

var ( log ( RV t )) Variance of realized variance 1.109 1.075 0.175 

β( log( RV t+ 1 ) → log ( RV t )) Autocorr. of realized variance 0.722 0.734 0.046 

R sqrd ( R t , t + 12 → pd t ) Predict. regression R -sq (1 year) 0.082 0.052 0.042 

R sqrd ( R t , t + 60 → pd t ) Predict. regression R -sq (5 years) 0.234 0.169 0.079 

β( R t , t + 1 → Δlog ( RV t+ 1 )) Realized variance β of the market –0.023 –0.023 0.002 

α( SR t → R t ) Alpha of vol. managed portfolio (ann.) 0.048 0.051 0.017 

β( R t , t + 1 → RV t ) Conditional risk-return trade-off –0.186 0.319 0.880 

Panel C: Estimated parameters 

Parameter Description Estimate S.E. 

σ 2 Average variance 0.034 0.006 

κσ Variance persistence 2.961 0.613 

νσ Variance of variance 4.347 0.469 

μ Equity premium 0.069 0.016 

αμ Share of discount rate shocks 0.449 0.143 

κμ Discount rate shocks persistence 0.129 0.108 

ρσ , μ Corr vol and DR shocks 0.669 0.131 

ρσ , S−μ Corr vol and CF shocks 0.743 0.154 
related to time variation in expected returns and return 

predictability. We emphasize that we do not model divi- 

dends or form price-dividend ratios in the model, but we 

use the predictive regressions in the data to infer the vari- 

ability and dynamics of the conditional expected return 

process. 

Our model for volatility is univariate and therefore is 

bound to miss the dynamics of volatility at some fre- 

quency. Because we are interested not in the level of hedg- 

ing demands per se, but the overall gains from volatil- 

ity timing, we choose to fit dynamics of volatility at the 

monthly frequency. In Section 6.1 we discuss this choice 

in detail and show that our results are robust to targeting 

lower frequency movements in volatility. 

2.2.1. Moments 

We choose the vector of target moments to be in- 

formative about the parameters. Our target moments are 

(1) average excess return on the risky asset (equity pre- 

mium); (2) average realized monthly variance; (3) the vari- 

ance of the logarithm of realized monthly variance; (4) 
the autocorrelation coefficient of the logarithm of realized 

monthly variance; (5–6) the R -squared of a predictabil- 

ity regression of one-year and five-year-ahead returns 

on the price-dividend ratio; (7) the regression coefficient 

of realized returns on changes in log realized variance 

(contemporaneous); and (8–9) the alpha of the volatility 

managed market portfolio on the market portfolio (see 

Moreira and Muir, 2017 ) as well as the risk-return trade- 

off estimated from regressions of future returns on real- 

ized variance. The alpha of the volatility managed port- 

folio is defined by the regression 

c 

RV 2 t 

R t+ 1 = α + βR t+ 1 + 

ε t+ 1 , where the alpha measures whether one can increase 

Sharpe ratios through volatility timing. Moreira and Muir 

(2017) show this alpha measures the strength of the risk- 

return trade-off over time but is a sharper measure than 

standard forecasting regressions. 

While there is not an exact one-to-one mapping 

between moments and parameters, the link between pa- 

rameters and moments is intuitive, and the moments are 

very informative about the parameters of interest. Average 

realized monthly variance identifies σ 2 and the average 
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excess stock return identifies μ. The autocorrelation of

volatility and the variance of log realized variance identify

νσ and κσ . These moments imply that the estimated

volatility process is highly volatile but not very persistent.

The return predictability R -squares at one-month and

five-year horizons identify αμ, the discount rate share,

and κμ, the volatility and persistence of discount rate

shocks. Intuitively, the one-year R -square implies the share

of discount rate shocks must be large and the fact that

five-year R -squares are substantially larger implies that

expected returns must be highly persistent. The covariance

between realized returns and changes in log variance,

the volatility managed alpha identify, and the conditional

risk-return trade-off identify ρσ , μ and ρσ , S−μ. In the data,

the large negative correlation between volatility innova-

tions and realized returns implies that ρ2 
σ , μ + ρ2 

σ , S−μ is

close to one. The alpha of the volatility managed portfolio

disciplines the extent to which this comovement is due to

a correlation between discount rates and volatility shocks.

In the data, a portfolio that takes less risk when volatility

is high generates a large Sharpe ratio, implying that the

comovement between volatility and discount rate shocks

is not strong (see Moreira and Muir, 2017 ). 

2.2.2. Estimation results 

Table 1 reports targeted moments in the model and in

the data. Overall the model matches the data extremely

well and matches the key empirical facts on the dy-

namics of stock returns shown in the finance literature.

Specifically, all model implied moments are within one

standard deviation of the data moments. In particu-

lar, the estimated volatility process is highly volatile, so

there is substantial time-variation in conditional volatil-

ity ( Schwert, 1989 ). Expected returns are quite variable,

i.e., discount rate volatility is an important component of

stock market volatility ( Campbell and Shiller, 1988 ), and

these discount rate shocks are strongly correlated with

volatility shocks ( French, Schwert and Stambaugh, 1987 ).

That is, increases in volatility are associated with low re-

alized returns and increases in expected returns. How-

ever, this correlation does little to dampen variation in

the risk-return trade-off because shocks to expected re-

turns are much more persistent than shocks to volatility,

and also the correlation between volatility and expected

returns, while large, is not equal to one. Thus, the model

is able to produce positive volatility managed alphas con-

sistent with Moreira and Muir (2017) because the model,

like the data, does not feature an overly strong risk-return

trade-off. That is, consistent with a long literature, there is

some risk-return trade-off in the data, but it appears to be

fairly weak ( French et al., 1987; Glosten et al., 1993; Lettau

and Ludvigson, 2003 ). Further, the estimation procedure

matches the volatility managed alpha more closely than

the risk-return trade-off regression due to the large stan-

dard error associated with the risk-return trade-off regres-

sion coefficient (this means the optimal weight matrix will

put less weight on this moment). Notice, the model fea-

tures a stronger conditional risk-return trade-off compared

to the data (which shows a negative relation and would

suggest even higher benefits to timing volatility) though

again, this is poorly estimated in the data. Thus, taken to-
gether, our process for returns matches the key empirical

features about the properties of expected returns, condi-

tional volatility, and realized returns shown by a long lit-

erature in asset pricing. 

We also report standard errors for the estimated mo-

ments and parameters in Table 1 . We follow the influence

function technique from Erickson and Whited (2002) to

estimate variance-covariance matrix of target moments,

and we use the inverse of this variance-covariance ma-

trix as the SMM weighting matrix. We report the moment

standard errors in Panel C of Table 1 . We note that the

model matches the moments well such that all model im-

plied moments are within one standard error of the em-

pirical counterpart. The moment that is farthest from the

data is the risk-return trade-off regression coefficient (the

coefficient is positive in the model implying a positive

risk-return trade-off, but the empirical point estimate is

negative). However, we note that this moment is poorly es-

timated empirically. Instead, the volatility managed alpha

provides a more precise measure of the risk-return trade-

off and the model matches this moment closely ( Moreira

and Muir, 2017 ). Note that because we use the optimal

weighting matrix, the estimation will pay less attention

to moments that are less precisely estimated. Hence, the

model is able to match the key properties of the risk-

return trade-off in the data as well as match the key dy-

namics of both volatility and expected returns. 

We report the parameter estimates and standard errors

in Panel B of Table 1 . Consistent with the large literature

on market timing, the dynamics of expected returns are

the least well estimated aspect of our model. This estima-

tion uncertainty will play a role in later sections where we

consider that the investor may not know the true parame-

ters in making his portfolio decision. In contrast, almost all

other parameters are well estimated in the model. The pa-

rameters imply a highly volatile and moderately persistent

process for volatility, a volatile and very persistent pro-

cess for expected returns with a large equity premium (al-

though again, there is uncertainty about the degree of ex-

pected return variation), and a strong negative correlation

between changes in volatility and realized stock returns. 

2.3. Preferences and optimization problem 

Investors preferences are described by Epstein and Zin

(1989) utility, a generalization of the more standard con-

stant relative risk aversion (CRRA) preferences that sepa-

rates risk aversion from elasticity of intertemporal substi-

tution. We adopt the Duffie and Epstein (1992) continuous

time implementation and focus on the case of unit elastic-

ity of substitution, though we relax this in later sections: 

J t = E t 

[ ∫ ∞ 

t 
f ( C s , J s ) ds 

] 
, (7)

where f ( C t , J t ) is an aggregator of current consumption and

continuation utility that takes the form 

f ( C, J) = β( 1 − γ ) J ×
[

log( C) − log(( 1 − γ ) J) 
1 − γ

]
, (8)

where β is rate of time preference; γ is the coefficient of

relative risk aversion. The unit elasticity of substitution is
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8 “And what about volatility?... [I]f you were happy with a 50/50 port- 

folio with an expected return of 7% and 15% volatility, 50% volatility 

means you should hold only 4.5% of your portfolio in stocks!... [E]xpected 

returns would need to rise from 7% per year to 78% per year to justify a 

50/50 allocation with 50% volatility... The answer to this paradox is that 

the standard formula is wrong... Stocks act a lot like long-term bonds... 

If bond prices go down more, bond yields and long-run returns will rise 

just enough that you face no long-run risk... [T]he same logic explains 

why you can ignore “short-run” volatility in stock markets.” ( Cochrane, 

2008a ) 
convenient for our purposes because it allow us to directly 

vary the investor horizon in a way that is independent 

of the attractiveness of the investment opportunity set. 

Specifically, 1 − exp ( −β) is the share of investors wealth 

consumed within one year. Thus 1/ β can be thought as the 

horizon of the investor. In Section 6.2 we consider alterna- 

tive preference specifications. 

Let W t denote the investor wealth and w t the allocation 

to the risky asset, then the budget constraint can be writ- 

ten as 

dW t 

W t 
= w t 

(
dS t 

S t 
− rdt 

)
+ rd t − C t 

W t 
d t . (9) 

The investor maximizes utility subject to his intertem- 

poral budget constraint, Eq. (9) , and the evolution of state 

variables, Eq. (2) . 

3. Analysis 

Our aim is to quantify the optimal amount of volatil- 

ity timing for a realistic portfolio problem in which an in- 

vestor decides how much to invest in the market portfo- 

lio and in a riskless asset. We solve for the investor value 

function numerically and study how the optimal portfo- 

lio should respond to changes in volatility. Our analysis is 

quantitative in nature and it is therefore important that 

our model for returns described in Eq. (1) –(2) fit the dy- 

namics of returns in the data. 

In the baseline case we study the problem of an in- 

vestor with a 20-year horizon ( β = 1 / 20 ) and risk aversion 

of five, and we investigate the sensitivity of our results to 

these parameter choices. 

3.1. Solution 

The optimization problem has three state variables: the 

investor’s wealth plus the investment opportunity set state 

variables μt and σ t . 

The Bellman equation for this problem is standard 

0 = sup 

w , C 
{ f ( C t , J t ) + [ w t μt W t + rW t − C t ] J W 

+ 

1 

2 

w 

2 
t W 

2 
t J W W 

σ 2 
t + w t W t 

(
− J W μ

√ 

αμσ 2 
t 

+ J W σ νσ

(
ρσ , S 

√ 

1 − αμ − ρσ , μ

√ 

αμ

)
σt 

)
+ J μκμ( μ − μt ) + J σ κσ ( f − f ( σ 2 

t )) 

+ 

1 

2 

J μμαμκ2 
μσ 2 

t + 

1 

2 

J σσ ν2 
σ

+ J μσρσ , μνσ α1 / 2 
μ κμσt } , (10) 

where we omit the argument on J t = J( W t , μt , σt ) for 

convenience. It is well known that the value function 

for this type of problem is of the form J( W , μt , σt ) = 

W 

1 −γ

1 −γ e ( 1 −γ ) g( μt , σt ) for γ > 1. Plugging this form in Eq. 

(10) we obtain that the optimal consumption to wealth ra- 

tio is constant, C t = βW t and the optimal portfolio weight 

satisfies 

w 

∗( μt , σ
2 
t ) = w 

m ( μt , σ
2 
t ) + H 

μ( μt , σ
2 
t ) + H 

σ ( μt , σ
2 
t ) , 

(11) 
where the first term in Eq. (11) is the myopic portfolio 

weight 

w 

m ( μt , σ
2 
t ) = 

1 

γ

μt 

σ 2 
t 

. (12) 

It calls the investor to scale up his position on the risky 

asset according to the strength of the risk-return trade- 

off and her coefficient of relative risk aversion. This is 

also the optimal portfolio weight of a short-horizon mean- 

variance investor (or log investor). The additional terms in 

Eq. (11) are Mertonian hedging demands ( Merton, 1971 ) 

that are given by 

H 

μ( μt , σ
2 
t ) = 

1 − γ

γ
g μ( μt , σ

2 
t ) 

√ 

αμ (13) 

H 

σ ( μt , σ
2 
t ) = 

1 − γ

γ
g σ ( μt , σ

2 
t ) 

×
(
−ρσ , S 

√ 

1 − αμ + ρσ , μ
√ 

αμ

)
νσ

σt 
. (14) 

The hedging demands H arises because a long-horizon 

investor is concerned with the overall distribution of her 

consumption and not only the short-term dynamics of her 

wealth. Changes in the risky asset expected returns or 

volatility lead to changes in the distribution of the investor 

wealth, resulting in a demand for assets that hedge these 

changes. To the extent that the risky asset is correlated 

with changes in the opportunity set, this demand for hedg- 

ing impacts the investor’s position in the risky asset. 

This hedging effect means that a long-horizon investor 

might behave very differently from a short-term oriented 

investor. An increase in volatility might generate an in- 

crease in the hedging demand that is enough to completely 

offset the reduction in exposure due to the myopic de- 

mand, i.e., it might be that long-horizon investors should 

just ignore time variation in volatility, in line with the ar- 

gument articulated in Cochrane (2008a) . 8 

The empirical fact that expected returns increase after 

low return realizations, dB μdB s < 0 makes investment in 

the risky asset a natural investment hedge for changes in 

expected returns. This effect has been studied extensively 

in the literature (e.g. Campbell and Viceira, 1999; Barberis, 

20 0 0; Wachter, 20 02 ), which has shown that when γ > 1,

this hedging demand leads a long-horizon investor to have 

a larger average position in the risky asset. 

A similar hedging demand arises due to changes in 

volatility, though with the opposite sign. The fact that in- 

creases in volatility tend to be associated with low return 

realizations also implies that the risky asset comoves with 

the investment opportunity set. Specifically, when γ > 1 
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Fig. 1. Optimal portfolio response to a volatility shock. The top panel 

shows the behavior of the conditional expected return, conditional vari- 

ance, and prices after a volatility shock. The bottom panel shows the op- 

timal portfolio response to a volatility shock for both a mean variance 

(short horizon) and a long-horizon investor (labeled optimal). It also plots 

the conditional hedging demand term of the long-horizon investor. The x- 

axis is in years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 See for example Campbell and Viceira (1999) . 
the hedging demand due to volatility pushes investors

to hold smaller positions in the risky asset ( Chacko and

Viceira, 2005; Buraschi et al., 2010 ). 

The direction of these hedging demands follows from

the interaction between changes in the Sharpe ratio and

the coefficient of relative risk aversion. An investor that

is more conservative than a log investor ( γ > 1) wants to

transfer resources from states where the opportunity set is

better to states where it is worse. Because expected and

realized returns are negatively correlated, a positive tilt to-

ward the risky asset implies her wealth increases follow-

ing reduction in the Sharpe ratio due to a reduction in

expected returns. Symmetrically, because volatility and re-

alized returns are negatively related, a negative tilt toward

the risky asset implies her wealth increases following a re-

duction in the Sharpe ratio due to an increase in volatility.

Investment horizon, together with the persistence of

the state variables ( κμ, κσ ), shapes the strength of the

hedging demand through the sensitivity of the value func-

tion to changes in the state variables ( g μ, g σ ). Intuitively,

persistent changes to the state impact the investment op-

portunity set for longer, and this impact is larger for in-

vestors with a longer horizon, which are naturally more

exposed to persistent changes in the opportunity set. As

a result, the value function is typically more sensitive to

the state variables, and the resulting hedging demands are

larger for investors with longer horizons. Here the unit

elasticity of intertemporal substitution (EIS) is particularly

convenient, as the patience parameter β directly controls

the effective horizon of the investor, i.e., the timing of their

consumption. 

3.2. Optimal portfolios 

We use projection methods to solve for g ( μt , σ t ) (see

the Internet Appendix for details). Here we discuss the im-

plications of g ( μt , σ t ) for the optimal portfolio in terms of

an impulse response function ( Fig. 1 ) and then as a func-

tion of the state variables ( 2 ). 

It is illuminating to discuss our results by contrasting

the optimal choices of long- and short-term investors. In

the top panels of Fig. 1 , we start by showing the response

of variance, expected returns, and prices to a one standard

deviation shock to variance, and then show how long- and

short-term investors respond. 

Expected returns go up in response to a volatility shock,

though quantitatively this increase is small. This is due to

the high correlation between realized returns and volatil-

ity innovations present in the data. Thus, an innovation

in volatility is correlated with innovations in expected re-

turns. Nevertheless, the myopic and the optimal portfolio

go down sharply and in parallel. This means that two in-

vestors with the same risk aversion, but different horizons,

will reduce the fraction of their wealth allocated to stocks

by exactly the same amount. In this sense, horizon has

no impact on how investors should respond to changes in

volatility. 

There are, however, large level differences across port-

folios. The long-term investor invests on average a much

higher fraction of their wealth in stocks. Level differences

across the optimal and the myopic portfolio are shown in
the level of the flat yellow line, which plots w 

∗( μt , σ 2 
t ) −

w 

m ( μt , σ 2 
t ) normalized by the steady state long-term port-

folio w 

∗( μ, σ 2 ) . The long-term investor has a risk exposure

that is about 20% larger than the myopic investors in the

steady state, but this difference, as a fraction of the risky

portfolio share, grows large as volatility goes up and the

myopic weight goes down. 

The flat yellow line implies that the hedging demand

is, at least locally, not strongly related to volatility. The

hedging demand term drives a difference between short-

and long-term investors, but this hedging demand term is

roughly constant so that conditional responses to volatility

variation are not substantially different. The response of a

long-term investor to volatility is completely driven by the

myopic component of her portfolio, i.e., variation due to

the instantaneous risk-return trade-off. 

In Fig. 2 we look at the global behavior of the op-

timal portfolio and show optimal policies as function of

each state variable. Consistent with earlier work we find

that the expected return hedging demand ( H 

μ) increases

with expected returns. 9 A new result unique to our anal-

ysis is that movements in the volatility hedging demand

( H 

σ ) counteract this increase to some extent. Intuitively,

investors are more exposed to volatility variation when

their position in the risky asset is large. Therefore as
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Fig. 2. Optimal portfolio policies. The top panels show how the optimal portfolio and it’s components vary as a function of the volatility state variable. 

Specifically, in the left panel we have the optimal portfolio (solid) and the myopic demand (dashed), and in the center and right panels we have the 

hedging demands due to volatility and expected return variation, respectively. The bottom panel show how the same quantities vary with the expected 

return state variable. 

 

 

expected returns increase, the volatility hedging demand 

becomes more negative. Increases in volatility reduce both 

volatility and expected return hedging demands. An in- 

crease in volatility reduces the expected return hedging 

demand because the investor has a smaller position on 

the risky asset when volatility is high and is therefore less 

exposed to variation in expected returns. The behavior of 

the volatility hedging demand is more nuanced, as it is u- 

shaped in volatility. As the volatility approaches the lower 

bound σ 2 , its volatility shrinks to zero. This effect makes 

the volatility hedging demand to become more negative as 

volatility increases from a low level. Eventually, the expo- 

sure channel dominates, and the hedging demand starts to 

become less negative as the investor reduces exposure to 

the risky asset as volatility increases further. 10 

Most importantly we see in the two right panels of 

Fig. 2 that the optimal portfolio tracks the myopic port- 

folio fairly closely as time variation in the myopic demand 

is an order of magnitude larger than time variation in the 

hedging demands. This motivates our analysis below. 

3.2.1. The optimal portfolio is simple 

Motivated by the result that movements in the hedging 

term are smaller compared to movements in the myopic 

demand ( Fig. 1 and 2 ), we consider portfolio strategies that 
10 Chacko and Viceira (2005) show that the exposure channel always 

dominates in a setting where the volatility process that does not feature a 

(strictly positive) lower bound. We confirm these findings in our setting. 
invest in the myopic portfolio plus a constant position in 

the buy-and-hold portfolio, 

˜ w 

∗( μt , σ
2 
t ) = a ∗ + b ∗w 

m ( μt , σ
2 
t ) . (15) 

To find the loadings in 

˜ w 

∗, we project w 

∗ onto 

a constant and the managed portfolio w 

m , i.e., ˜ w 

∗ = 

proj( w 

∗| 1, w 

m ) . Given this portfolio rule ˜ w 

∗, we then

solve for the investor’s lifetime utility and compare this 

to the utility obtained under the fully optimal portfo- 

lio w 

∗. We find that the portfolio strategy ˜ w 

∗ with b ∗ = 

cov ( w 

m , w 

∗) v ar( w 

m ) −1 and a ∗ = E[ w 

∗
t − b ∗w 

m 

t ] attains the

same lifetime utility as the optimal portfolio, i.e.,the linear 

projection of the optimal portfolio on the myopic portfolio. 

The approximation 

˜ w 

∗ is not only a good local approxima- 

tion for the optimal portfolio but also an excellent global 

approximation. We refer to ˜ w 

∗( μt , σ 2 
t ) as the optimal lin- 

ear portfolio because its loading is a linear function of the 

myopic portfolio. 11 

This result can be seen in Table 2 that shows the 

optimal policy loadings and the percentage lifetime ex- 

pected utility loss from switching from the optimal port- 

folio to the affine approximation. A utility loss close to 

zero implies the investors forego almost no consumption 

if it adopts the simpler strategy. Thus ˜ w 

∗ provides a good 

global approximation to w 

∗. 12 
11 Formally, it is an affine function of w 

m . 
12 A 1% utility loss is equivalent to decreasing the investor consumption 

by 1% state by state. 
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Table 2 

Optimal portfolio as a function of investor horizon and risk aversion. 

We first show ζ , the local elasticity of the optimal portfolio loading ( w 

∗
t ) to changes in variance ζ = 

−d log ( w 

∗
t )/ d log ( σ 2 

t ) as we vary the investors’ horizon ( β−1 ) from 10 to 100 years across columns and as we 

vary the investors’ risk aversion ( γ ) from 3 to 10 across rows. We then show the approximation of the opti- 

mal portfolio that is affine in the myopic portfolio ̃  w 

∗( μt , σ 2 
t ) = a ∗ + b ∗w 

m ( μt , σ 2 
t ) where w 

m ( μt , σ 2 
t ) = 

μt 

γ σ 2 
t 

. 

We report loadings in the static buy-and-hold portfolio ( a ∗) and the myopic portfolio ( b ∗). The panel Δ˜ U 

computes the utility losses from following the affine portfolio ˜ w compared to the fully optimal portfolio w 

∗ , 

i.e., Δ˜ U = U [ ̃  w 

∗]/ U [ w 

∗ ] − 1 . It shows that our linear strategy ˜ w approximates the fully optimal portfolio well, 

as it results in small utility losses. Utility losses are in expected return units (e.g., Δ˜ U = −1 is equivalent to 

a 1% per year lower loss). Last, the panel ΔU ∗ shows the utility gains from switching from a static buy-and- 

hold portfolio (no timing of either state variable, with constant loading w̄ = μ/( γ σ 2 ) ) to the optimal timing 

portfolio ( ΔU ∗ = U ( w 

∗)/ U ( ̄w ) − 1 ). 

ζ Δ˜ U 

γ / β−1 10 20 50 75 100 γ / β−1 10 20 50 75 100 

3.00 0.88 0.86 0.84 0.84 0.84 3.00 –0.03 –0.02 –0.02 –0.05 –0.05 

5.00 0.88 0.85 0.83 0.83 0.83 5.00 –0.03 –0.02 –0.02 –0.02 –0.03 

10.00 0.87 0.86 0.83 0.82 0.82 10.00 –0.02 –0.03 –0.01 –0.01 –0.01 

a ∗ ΔU ∗

γ / β−1 10 20 50 75 100 γ / β−1 10 20 50 75 100 

3.00 0.16 0.21 0.25 0.25 0.25 3.00 5.00 4.71 4.40 4.20 4.15 

5.00 0.11 0.14 0.17 0.18 0.17 5.00 3.14 2.84 2.59 2.52 2.42 

10.00 0.06 0.07 0.09 0.09 0.09 10.00 1.67 1.41 1.28 1.24 1.22 

b ∗

γ / β−1 10 20 50 75 100 

3.00 0.99 0.99 1.00 1.00 1.00 

5.00 0.98 0.99 1.00 1.00 0.99 

10.00 0.98 0.98 0.99 1.00 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result that the optimal linear portfolio ˜ w 

∗ achieves

the optimal utility is important because the numerical so-

lution generates simple and implementable portfolio ad-

vice. Every investor can implement their strategy with

two mutual funds: one that holds the market and one

that times the risk-return trade-off. Tables 2 and 3 also

show that the (approximate) optimality of the linear port-

folio holds up across a wide range of parameters for the

stochastic process, investment horizons, and risk aversion

(specifically, we show how quantities change as we in-

crease each parameter by one standard deviation). Note

further that ω 1 ≈ 1 across a wide range of parameters.

This tells us that the investment horizon plays a quantita-

tively important role only on the allocation to the buy-and-

hold mutual fund. Investors, irrespective of their invest-

ment horizon, allocate the same fraction of their wealth to

the timing mutual fund. Thus, investor portfolio response

to volatility—as a fraction of their wealth—is always the

same regardless of the investment horizon. 

3.2.2. The optimal portfolio elasticity to changes in volatility 

Another way to evaluate how responsive to volatility

changes investors should be is in terms of an elasticity,

i.e.,the percentage change in the portfolio allocation result-

ing from a 1% increase in volatility, which is defined as 

ζ = −dlog( w 

∗( μt , σ 2 
t )) 

dlog( σ 2 
t ) 

. (16)

This perhaps provides a more direct measure of the im-

portance of volatility driven changes for a particular in-
vestor. For a myopic investor ζ = 1 − d ln ( μt )/ d ln ( σ 2 
t ) ,

which goes to one as the conditional risk-return trade-off

goes to zero. Our estimates imply ζ m = 0.96, which reflects

the small increase in expected return following a volatility

shock we see in Fig. 1 . An elasticity of one implies an in-

vestor reduce their exposure to stocks by 10% for a 10%

increase in volatility. 

The approximation (15) implies ζ ≈ b ∗w 

m 
t 

a ∗+ b ∗w 

m 
t 
ζ m , with

the long-term investor elasticity lower than the myopic

as long a ∗ > 0. The elasticity also goes to zero as the my-

opic loading goes down due, for example to an increase

in volatility. In Table 2 we focus on the elasticity of the

optimal portfolio around the median value of the state

variables to a one standard deviation increase in variance,

i.e.,the typical response to volatility. For the baseline pa-

rameters we find an elasticity of 0.85, which implies that

as a share of her portfolio a long-horizon investor should

respond less aggressively to variation in volatility. This

happens because the long-horizon investor has a larger

investment in the stock market to begin with (from the

hedging demand term). 

In Tables 2 and 3 we see that variation in ζ tracks

variation in a ∗, the optimal allocation to the buy-and-hold

portfolio. For example, when the expected return is very

volatile, high αμ, the loading a ∗ is extremely high and the

volatility elasticity is lower, around 0.68. To a smaller ex-

tent this also happens as we increase the investment hori-

zon with the elasticity going down from 0.88 to 0.83 as the

investment horizon increases from 10 to 50 years. 
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Table 3 

Optimal portfolio and estimated parameters. 

Here we show how key quantities of the portfolio policy change 

as we vary the model parameters. We use our estimation stan- 

dard errors and report key quantities as we increase each param- 

eter (parameter by parameter) by one standard deviation. We first 

show ζ , the local elasticity of the optimal portfolio to changes in 

variance ζ = −d log ( w 

∗
t )/ d log ( σ 2 

t ) . We then show the approxima- 

tion of the optimal portfolio that is affine in the myopic portfo- 

lio ̃  w 

∗( μt , σ 2 
t ) = a ∗ + b ∗w 

m ( μt , σ 2 
t ) where w 

m ( μt , σ 2 
t ) = 

μt 

γ σ 2 
t 

. We 

report loadings in the static buy-and-hold portfolio ( a ∗) and the 

myopic portfolio ( b ∗). The column Δ˜ U computes the utility losses 

from following the affine portfolio ˜ w compared to the optimal 

portfolio, i.e., Δ˜ U = U [ ̃  w 

∗]/ U [ w 

∗ ] − 1 . It shows that our linear ap- 

proximation captures the true optimal portfolio well in terms of 

resulting in small utility losses. Utility losses are in expected re- 

turn units (e.g., Δ˜ U = −1 is equivalent to a 1% per year lower 

loss). Finally, the column ΔU ∗ shows the utility gains from switch- 

ing from a static buy-and-hold portfolio (no timing of either 

state variable, with constant loading w̄ = μ/( γ σ 2 ) ) to the opti- 

mal timing portfolio ( ΔU ∗ = U ( w 

∗)/ U ( ̄w ) − 1 ). 

Parameter Value ζ a ∗ b ∗ Δ˜ U ΔU ∗

Baseline 0.85 0.14 0.99 -0.02 2.84 

σ 3.97 0.83 0.13 0.98 –0.02 3.13 

κσ 3.57 0.79 0.16 0.98 –0.01 2.44 

νσ 4.82 0.90 0.14 1.00 –0.01 3.39 

μ 8.51 0.89 0.13 0.99 –0.04 5.15 

αμ 0.59 0.78 0.23 1.00 –0.03 2.79 

κμ 0.24 0.83 0.16 0.98 –0.05 2.73 

ρσ , μ 0.80 0.84 0.15 0.99 –0.02 2.76 

ρσ , S−μ 0.90 0.85 0.14 0.99 –0.02 3.06 

 

In summary, the data on stock market returns, when 

looked at through the lens of the standard moments 

studied in the literature, strongly rejects the conjecture 

that investors should ignore movements in volatility. In- 

vestors with long investment horizons are somewhat less 

responsive to changes in volatility in terms of the percent- 

age change in the size of their equity portfolio a given 

volatility movement calls for. However, as a percentage of 

their total wealth, both short- and long-term investors re- 

spond by identical amounts. 

3.3. The (large) costs of ignoring variation in volatility 

It is now clear that long-horizon investors should time 

volatility quite aggressively. Yet one could think that be- 

cause volatility shocks are not very persistent, it might not 

be very costly to deviate from the optimal strategy. Here 

we evaluate the benefits of volatility timing by comparing 

increases in utility of only using information on conditional 

volatility, with the fully optimal policy that also uses infor- 

mation on conditional expected returns. 

Specifically, we focus on a volatility timing strategies of 

the form 

˜ w 

σ ( σ 2 
t ) = a σ + b σ

μ

γ σ 2 
t 

, (17) 

where μ

γσ 2 
t 

is the loading of a volatility managed portfo- 

lio from Moreira and Muir (2017) . We again find the load- 

ings a σ and b σ by projecting the fully optimal portfolio, 

w 

∗, onto a constant and the volatility managed portfolio 

so that ˜ w 

σ ( σ 2 
t ) = proj( w 

∗| 1, μ

γσ 2 ) . We refer to ˜ w 

σ ( σ 2 
t ) as
t 
the optimal volatility timing portfolio. We then compute 

the increase in utility from switching from the myopic 

buy-and-hold portfolio to ˜ w 

σ ( σ 2 
t ) , a portfolio that invests 

fixed amounts in the buy-and-hold portfolio and volatility- 

managed portfolio. We then compare these gains from 

volatility timing with the utility increase from switching 

from buy-and-hold to the fully optimal policy. We report 

these utility gains in terms of an annualized per period fee, 

i.e.,the management fee that the naive buy-and-hold in- 

vestor would be willing to pay to switch to one of the the 

timing strategies (see Section C of the Internet Appendix 

for details). 

Table 4 show results for our point estimates for hori- 

zons ranging from 10 to 100 years and coefficient of rela- 

tive risk aversion ranging from three to ten. Following the 

myopic buy-and-hold strategy is very costly. For the base- 

line estimates, the naive buy-and-hold investor would be 

willing to pay 2.36% per period annualized fee to volatility 

time. In wealth equivalent terms this a 60% increase rel- 

ative to buy-and-hold. A switch to the full optimal policy 

that also uses expected return information implies a fee of 

2.84%. Thus the gains from volatility timing are large when 

compared to the total benefits of exploiting conditioning 

information. Specifically, Table 4 shows that investors can 

capture 80% of the total gains from timing by only tim- 

ing volatility for an investment horizon of 20 years, and 

this share is larger than 70% for investors with horizons 

up to 100 years. Gains decay with the investment horizon 

but only very slowly. 

Looking across rows in Table 5 we see that that this 

pattern holds up across a wide set of parameters. Volatil- 

ity timing always increases utility relative to buy-and-hold, 

and always leads to increases that are more than 50% of 

the total gains form timing. All comparative statics are very 

intuitive. Gains make up a larger fraction of total gains 

when volatility is more variable and more persistent, ex- 

pected returns are less volatile and more persistent, and 

investment horizons are shorter. 

Lastly, it is worth highlighting the importance of the 

unconditional expected return. We see in Table 5 that the 

gains from volatility timing are strongly increasing in 

the unconditional expected return. This is consistent with 

the analysis in Moreira and Muir (2017) who find that 

when there is no conditional risk-return trade-off, the 

gains from volatility timing for a myopic investor increase 

proportionally to the unconditional risk-return trade-off. 

Overall, these results show that ignoring volatility is 

likely to be very costly. These costs are large not only for 

our point estimates but also for a wide range of parame- 

ters that are consistent with the data. 

4. The composition of volatility shocks 

We have so far followed the empirical literature and 

assumed that the composition of volatility shocks is con- 

stant, equal to αμ (see for example Campbell et al., 2016 ). 

Thus, when volatility changes, discount rate and cash flow 

volatility change proportionally (this is captured by the 

conditional volatility of d μt being proportional to σ t ). As 

a result, the amount of mean reversion in returns is con- 

stant. While this assumption is plausible a priori, it rules 
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Table 4 

Utility gains from timing as a function of horizon and risk aversion. 

We report loadings ( a σ , b σ ) in the volatility timing portfolio that is given by ˜ w 

σ ( σ 2 
t ) = a σ + b σ μ

γσ 2 
t 

. This 

portfolio is the approximation of the optimal portfolio that is an affine function of the volatility managed 

portfolio μ
γσ 2 

t 

. We then compare utility gains from several portfolio strategies. The first strategy is the op- 

timal linear portfolio ˜ w 

∗( μt , σ 2 
t ) = a ∗ + b ∗w 

m ( μt , σ 2 
t ) (with associated utility U [ ̃  w 

∗] ), where w 

m ( μt , σ 2 
t ) = 

μt 

γ σ 2 
t 

is the myopic portfolio loading. The second is the volatility timing portfolio. The third is the myopic 

buy-and-hold portfolio w̄ = μ/( γ σ 2 ) . The panel ΔU σ shows the utility gains from switching from buy-and- 

hold to the volatility timing portfolio ( ΔU σ = U ( ̃  w [ σ 2 
t ])/ U ( ̄w ) − 1 ). The last panel shows the faction of the 

total utility gain that occurs from switching from the zero-timing buy-and-hold portfolio to the optimal 

portfolio can be achieved with just the volatility timing portfolio ( ΔU σ / ΔU ∗). Utility gains are in expected 

return units (e.g., ΔU σ = 1 is equivalent to a 1% per year gain). 

a σ ΔU σ

γ / β−1 10 20 50 75 100 γ / β−1 10 20 50 75 100 

3.00 0.17 0.22 0.26 0.22 0.23 3.00 4.21 3.88 3.48 3.37 3.30 

5.00 0.11 0.14 0.16 0.16 0.14 5.00 2.69 2.36 2.02 1.92 1.87 

10.00 0.05 0.05 0.08 0.08 0.08 10.00 1.45 1.21 0.99 0.93 0.89 

b σ ΔU σ / ΔU ∗

γ / β−1 10 20 50 75 100 γ / β−1 10 20 50 75 100 

3.00 0.88 0.89 0.89 0.90 0.90 3.00 84.19 82.38 79.11 80.24 79.39 

5.00 0.88 0.89 0.90 0.90 0.91 5.00 85.69 82.92 78.12 76.16 77.24 

10.00 0.89 0.90 0.91 0.91 0.91 10.00 87.03 85.44 77.35 74.84 73.32 

Table 5 

Utility gains from timing and estimated parameters. 

Here we show how key quantities of the portfolio policy change as we 

vary the model parameters. We use our estimation standard errors and 

report key quantities as we increase each parameter (parameter by pa- 

rameter) by one standard deviation. We report loadings ( a σ , b σ ) in the 

volatility timing portfolio that is given by ˜ w 

σ ( σ 2 
t ) = a σ + b σ μ

γσ 2 
t 

. This 

portfolio is the approximation of the optimal portfolio that is an affine 

function of the volatility managed portfolio μ
γσ 2 

t 

. We then compare util- 

ity gains from several portfolio strategies. The first strategy is the opti- 

mal linear portfolio ̃  w 

∗( μt , σ 2 
t ) = a ∗ + b ∗w 

m ( μt , σ 2 
t ) (with associated util- 

ity U [ ̃  w 

∗] ), where w 

m ( μt , σ 2 
t ) = 

μt 

γ σ 2 
t 

is the myopic portfolio loading. The 

second is the volatility timing portfolio. The third is the myopic buy-and- 

hold portfolio w̄ = μ/( γ σ 2 ) . The panel ΔU σ shows the utility gains from 

switching from buy-and-hold to the volatility timing portfolio ( ΔU σ = 

U ( ̃  w [ σ 2 
t ])/ U ( ̄w ) − 1 ). The last panel shows the faction of the total util- 

ity gain that occurs from switching from the zero-timing buy-and-hold 

portfolio to the optimal portfolio can be achieved with just the volatil- 

ity timing portfolio ( ΔU σ / ΔU ∗). Utility gains are in expected return units 

(e.g., ΔU σ = 1 is equivalent to a 1% per year gain). 

Parameter Value a σ b σ ΔU σ ΔU σ / ΔU ∗

Baseline 0.14 0.89 2.36 82.92 

σ 3.97 0.13 0.87 2.61 83.14 

κσ 3.57 0.17 0.87 1.95 79.87 

νσ 4.82 0.11 0.92 2.86 84.42 

μ 8.51 0.11 0.92 4.68 90.81 

αμ 0.59 0.22 0.88 2.13 76.34 

κμ 0.24 0.17 0.85 1.94 70.85 

ρσ , μ 0.80 0.16 0.88 2.34 84.85 

ρσ , S−μ 0.90 0.12 0.92 2.38 77.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out the idea that movements in volatility are mostly due

to “short-term volatility.” For example, Cochrane (2008a)

argues that the huge spike in volatility in the fall of 2008

was fundamentally about an increase in the volatility of

transitory shocks: 

And what about volatility? ...[T]he standard formula is

wrong... Stocks act a lot like long-term bonds ... If bond
prices go down more, bond yields and long-run returns

will rise just enough that you face no long-run risk...

[T]he same logic explains why you can ignore “short-

run” volatility in stock markets. ( Cochrane, 2008a ) 

Empirically, there is no direct empirical evidence that

confirms or refutes Cochrane (2008a) conjecture. In light

of the fact that measuring the average share of discount

rate shocks is already challenging ( Goyal and Welch, 2008 ),

measuring time variation in the share is even harder. Nev-

ertheless, Henkel, Martin and Nardari (2011) and Golez and

Koudijs, 2018 provide some indirect evidence that suggests

that there might be a positive correlation between volatil-

ity and the discount rate share. Using data that goes back

to the seventeenth century, Henkel et al. (2011) and Golez

and Koudijs, 2018 show that most of the evidence for re-

turn predictability comes from periods identified as eco-

nomic recessions. Together with the evidence that volatil-

ity tends to be high in recessions ( Schwert, 1989 ), this evi-

dence suggests that there might be a positive comovement

between volatility and the degree of mean reversion in

stock returns consistent with the idea that at least some of

the movements in volatility are due to short-term volatil-

ity. 

This comovement might matter a great deal to a long-

term investor. If increases in volatility are entirely due to

increases in discount rate volatility, the increase in return

mean reversion will offset the increase in volatility, mak-

ing the risky asset just as safe in the long run. Thus, the

intuition is that investors with long investment horizons

should not perceive periods of high discount rate volatility

as much riskier than low volatility periods. 

We model this comovement by focusing on the extreme

case in which all variation in volatility is due to variation

in discount rate volatility. Specifically, we decompose re-

turn innovations into transitory discount rate ( dB 
μ

) and
t 
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Fig. 3. The composition of volatility shocks and the optimal portfolio re- 

sponse to a volatility shock. We repeat the exercise of plotting the opti- 

mal response to a volatility shock, but now we allow the composition of 

volatility shocks to change. Specifically, we now assume that the entire 

variation in volatility is due to variation in the volatility of discount rate 

shocks. Thus, the share of discount rate shocks in this case is increasing 

with volatility. To implement this, we assume the volatility of permanent 

shocks to returns (which we label “cash flow shocks,” consistent with the 

literature) is constant and equal to 7% and all time variation in volatility 

is due to discount rate volatility. This generates more mean reversion in 

returns when volatility spikes and hence increases the hedging demand 

term in high volatility periods as shown in the lower right figure. See 

Section 4 for a detailed description. The top plot shows the share of dis- 

count rate shocks in response to a one standard deviation volatility shock, 

the bottom left plot shows the response of volatility and expected return 

to a one standard deviation volatility shock, and the bottom right panel 

shows the optimal portfolio response. 
permanent “cash flow” shocks 13 ( dB c t ) as 

d B 

S 
t = −

√ 

σ 2 
t − σ 2 

σ 2 
t 

d B 

μ
t + 

√ 

σ 2 

σ 2 
t 

d B 

c 
t , (18) 

which implies that the volatility of cash flow shocks is 

constant and only discount rate volatility varies. Consistent 

with Eq. (18) we set the volatility of expected returns in 

Eq. (2) to κμ

√ 

σ 2 
t − σ 2 , which implies the discount rate 

share of return shocks is 

σ 2 
t − σ 2 

σ 2 
t 

. (19) 

This share goes to 1 as volatility spikes to high levels 

and goes to zero as volatility drifts to the lower bound. 14 

Thus, when volatility is low returns are driven by perma- 

nent shocks and when volatility is high they are driven 

more by transitory shocks. 

Fig. 3 show the impulse response functions (IRFs) for 

this extreme case in which all volatility variation is due to 

variation in the volatility of discount rate shocks. In the 

middle panel we see how the discount rate share spikes 

up with volatility and then slowly comes down. In the bot- 

tom panel we see that this results in an increase in hedg- 

ing demand, which counteracts the decrease is exposure 

due to the myopic demand. It is still optimal to reduce 

the portfolio exposure after a volatility shock, but the re- 

sponse is less aggressive. Intuitively, stocks become rela- 

tively safer for a long-term investor than for a short-term 

investor when the share of discount rate shocks goes up. 

In response to a one standard deviation shock, the investor 

reduces his position in the risky asset by 30%, substantially 

less than the 45% in the constant discount rate share case. 

The optimal portfolio can still be implemented with 

a constant position in the buy-and-hold and the myopic 

portfolio, but now the exposure to the myopic portfolio 

deviates from one. The elasticity to changes in volatility 

goes down from 0.83 in our baseline case to 0.39 in the 

discount rate volatility case, a large decline in the portfo- 

lio response to volatility variation. Nevertheless, the long- 

horizon investor still finds it optimal to time volatility. 

Investors with a long investment horizon find it opti- 

mal to time the volatility of purely transitory shocks be- 

cause our estimation implies these shocks take a long time 

to mean revert—the speed of mean reversion is very slow. 

Specifically, our SMM estimation interprets the return fore- 

casting R -squares increase from 0.6% at the monthly hori- 

zon to 23% at the five-year horizon as evidence that the ex- 

pected return process should be very persistent. This steep 

slope implies a mean reversion coefficient of κμ = 0.13 

for movement in expected returns, which translates into 

an autocorrelation of about 0.8 at the yearly frequency (a 

half-life of about six years). To put in perspective, an in- 

vestor with a 20-year horizon (our baseline calibration) 

consumes about 30% of her wealth during this period. 
13 We use the term “cash flow” shocks as is often used in the literature, 

but we simply mean permanent shocks to returns. 
14 The correlation between cash flow and volatility shocks is simply < 

d B 
S−μ
t , d B σt > = −ρσ , S . 
Thus, investors respond to variation in the volatility of dis- 

count rate shocks because a substantial fraction of their 

consumption responds to variation in discount rates. 

However, it is possible that return forecasting R -squares 

based on price-dividend ratios might lead us to overesti- 

mate the persistence of expected returns. Among others, 

Lettau and Van Nieuwerburgh (2008) and more recently 

Kelly and Pruitt (2013) find evidence that expected returns 

are less persistent than implied the return forecasting R - 

squares we use in our estimation. For example, Lettau and 

Van Nieuwerburgh (2008) show that when they allow for 
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Table 6 

Time varying composition of volatility shocks. 

Here we show how time variation in the discount rate share impacts the optimal investment strategy. In the first columns 

(“baseline”), this share is constant (our baseline case), and in the next columns the discount rate share is increasing with 

volatility, which we label “positive comovement.” In short, while the degree of mean reversion in returns is constant in 

our baseline case, in the second case there is relatively more mean reversion in returns when volatility is high (see text 

for more details). Next, as we go from left to right we show what happens when we decrease the persistence of discount 

rates (increase in κμ) and show implied annual autocorrelations of expected returns. The idea is that lower discount 

rate persistence makes mean reversion in returns occur more quickly and thus makes discount rate shocks less risky 

for long-term investors. We show elasticities to volatility ζ and compare the utility from alternative portfolio strategies. 

The first, ˜ w 

∗( μt , σ 2 
t ) is the optimal linear portfolio (with associated utility U [ ̃  w 

∗] ). The second, ˜ w 

σ ( σ 2 
t ) = a σ + b σ μ

γσ 2 
t 

is the volatility timing portfolio. It is an approximation of the optimal portfolio that is affine in the volatility managed 

portfolio μ
γσ 2 

t 

. The third is the myopic buy-and-hold portfolio w̄ = μ/( γ σ 2 ) . The row denoted ΔU ∗ shows the utility gain 

for an investor going from the myopic buy-and-hold portfolio to the optimal linear portfolio ( ΔU ∗ = U [ ̃  w 

∗]/ U [ ̄w ] − 1 ). The 

row denoted ΔU σ shows the utility gain for an investor going from the buy-and-hold portfolio to the volatility timing 

portfolio ( ΔU σ = U [ ̃  w ( σ 2 
t )]/ U [ ̄w ] − 1 ). The last row shows the fraction of the total utility gain from the optimal portfolio 

can be achieved with the volatility timing portfolio ( ΔU σ / ΔU ∗). Utility losses are in expected return units (e.g., ΔU σ = 1 

is equivalent to a 1% per year gain). Ee report the data moments for comparison. The data column uses monthly market 

portfolio returns and it’s price-dividend ratio for the sample 1926 to 2015. 

Data Baseline Positive comovement 

κμ 0.06 0.15 0.25 0.40 0.60 0.06 0.15 0.25 0.40 0.60 

ρ( μt , μt+ 12 ) 0.91 0.90 0.83 0.75 0.65 0.54 0.90 0.83 0.75 0.65 0.53 

R -sqrd 1 month 0.59 0.29 0.50 0.73 1.07 1.51 0.49 0.87 1.30 1.93 2.74 

R -sqrd 1 year 8.18 3.32 5.52 7.66 10.20 12.56 5.55 9.75 13.90 19.14 24.52 

R -sqrd 5 years 23.43 12.80 16.70 17.98 17.16 14.74 21.71 31.58 37.06 39.69 38.89 

ζ 0.88 0.83 0.80 0.76 0.71 0.52 0.39 0.33 0.28 0.23 

ΔU ∗ 2.69 2.64 2.70 2.88 3.21 2.73 3.35 3.92 4.62 5.40 

ΔU σ 2.44 2.10 1.86 1.59 1.31 1.65 1.62 1.48 0.03 –0.36 

ΔU σ / ΔU ∗ 90.64 79.40 68.71 55.28 40.69 60.16 48.20 37.82 0.58 –6.72 
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a structural break in the sample, the half-life of expected

return shocks decrease to about three years. 15 On the other

hand, it is also possible that expected returns are more

persistent than what we might estimate in these regres-

sions (see Stambaugh, 1999 , for why persistence may be

understated in shorter samples). 16 

Motivated by these findings, in Table 6 we study how

positive comovement between volatility and mean rever-

sion interacts with the persistence of the expected return

process. We focus the most on cases where expected re-

turns are less persistent than implied by the price-dividend

ratio because this implies mean reversion in returns would

happen more quickly, amplifying the hedging demand for

long-horizon investors. The return forecasting R -squares

reported in the top rows of Table 6 show that the expected

return dynamics implied by our the various calibrations

are comparable to what the empirical literature finds using

various signals and methodologies. Specifically, they imply

potentially much higher predictability at short horizons. 

In the second column of Panel A we have our baseline

estimation (expected return persistence of κm 

u and con-

stant share of discount rate shocks). In the second column

of Panel B we have this same persistence but now with

positive comovement between volatility and mean rever-

sion. As expected returns become less persistent we see

that the elasticity decays from 0.53 to 0.2 in the positive

comovement case. The relative benefits of timing volatility
15 See also evidence presented in Drechsler and Yaron (2011) . 
16 We thank a referee for this point. However, we note that if ex- 

pected returns are more persistent than we estimate, this further limits 

the possibility of the volatility composition channel playing a role—hence 

it makes our conclusion that long-term investors should time volatility 

stronger. 

 

 

 

 

 

 

 

also decay, going down from 60% of the total gains from

timing when expected returns are most persistent to zero

when expected returns are the least persistent. 

While measuring the exact degree of comovement be-

tween mean reversion and volatility is challenging, varia-

tion in return autocorrelations allow us to impose some

restrictions on expected return dynamics. Intuitively, in the

presence of positive comovement between volatility and

mean reversion, the autocorrelation in returns should be

more negative in high volatility months than in low volatil-

ity months. Specifically we compute, 

orr H−L ( R t , t + k , R t−1, t ) = Cor r ( R t , t + k , R t−1, t | RV 

2 
t−1 > RV 

2 
50% ) 

−Cor r ( R t , t + k , R t−1, t | RV 

2 
t−1 < RV 

2 
50% ) , (20)

where RV 2 50% is the median of the realized variance in the

sample. 

Table 7 shows these results. While in the data the dif-

ference in return autocorrelations between high and low

volatility months is 0.45%, in the model it ranges from –

2% to –14% depending of how persistent are expected re-

turns and whether the discount rate share co-varies posi-

tively with volatility. While estimation uncertainty cannot

rule out the possibility that there is positive comovement

with very persistent expected returns, this moment is in-

formative enough to rule out (with 4% p -value) positive co-

movement and expected returns that are equally or less

persistent than implied by a expected return persistence of

κμ = 0.4 ( cor r ( μt+ 12 , μt ) ≈ 0.6 ). Put differently, if all high

volatility episodes were associated with a lot more mean

reversion in returns and this mean reversion happened

very quickly, then returns would be much more nega-

tively autocorrelated during high volatility periods. Thus,

the data rule out this combination, and place a joint bound
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Table 7 

Time varying composition of volatility shocks in the data. 

This table evaluates the time varying composition of volatility shocks in the data and 

the model. Specifically, we place joint bounds on the amount of comovement between 

volatility and mean reversion in returns by studying conditional return autocorrela- 

tions (at a one-year horizon) in high volatility versus low volatility episodes. We show 

that, as we increase the relationship between mean reversion in returns and volatility 

(“positive comovement”), this implies that stock returns should have a more negative 

autocorrelation in high volatility compared to low volatility periods. We show this 

by computing corr H−L , which is the difference in return autocorrelations conditional 

on volatility being above (“High”) and volatility being below (“Low”) its median value. 

We then show that this difference is more pronounced when expected returns are less 

persistent (intuitively because this persistence controls the speed of mean reversion), 

and the columns in the table go from more persistent to less persistent expected re- 

turns as we go from left to right. The table shows that the data can reject the joint 

presence of positive co-moment between volatility and the discount rate share and 

an expected return process with low persistence. This is key because it is only in this 

case that volatility timing provides low benefits for long-horizon investors (see pre- 

vious table). The p -value is computed by simulating the given process in the model 

10,0 0 0 times and comparing the conditional return autocorrelations in these simula- 

tions with the empirical autocorrelation of returns in high and low volatility periods 

given in the top panel of the table. The data panel uses the market portfolio return 

from 1926–2015 and uses realized volatility in each month to condition on high and 

low volatility periods. 

Data 

corr H−L ( R t , t + 12 , R t−1, t ) × 10 2 0.452 

Model 

κ 0.060 0.150 0.250 0.400 0.600 

Baseline 

corr H−L ( R t , t + 12 , R t−1, t ) × 10 2 –2.011 –2.961 –3.716 –4.436 –4.903 

p -value 0.359 0.315 0.276 0.243 0.218 

Positive comovement 

corr H−L ( R t , t + 12 , R t−1, t ) × 10 2 –2.812 –6.012 –8.791 –11.808 –14.362 

p -value 0.332 0.166 0.087 0.038 0.023 
on the amount of comovement in volatility and mean re- 

version together with the speed of mean reversion. This 

rules out the range of parameters for which volatility tim- 

ing is no longer beneficial. 

Overall, this section shows that the composition of 

volatility shocks is a quantitatively important determi- 

nant of the optimal response to volatility. The comove- 

ment of volatility with the discount rate share determines 

whether it is optimal to respond more or less aggressively 

to changes in volatility. While the results in Table 7 leave 

open the possibility that there is positive comovement be- 

tween volatility and mean reversion, it rules out the joint 

possibility that there is positive comovement and mean re- 

version which happens too quickly for long-term investors 

to care about transitory shocks. Therefore for the range of 

expected return dynamics that is likely given the data, it 

is always optimal to reduce the position in the risky asset 

when volatility goes up, and the benefits of such a strategy 

are sizable given likely parameters. 17 

5. Incorporating uncertainty 

This section does two things. First, we assess the un- 

certainty surrounding our utility gains. Specifically, rather 
17 In unreported results we study the case in which all volatility is 

driven by cash flow shocks. We find that in this case the optimal re- 

sponse to volatility variation and utility gains from volatility timing are 

larger than in our baseline case. 
than only reporting the point estimate for average utility 

gains, we study the full distribution of utility gains where 

we use the uncertainty from our estimation procedure 

about the parameters. We find the gains from volatility 

timing are extremely likely to be positive. Second, we then 

incorporate the fact that the parameters are unlikely to be 

known by the investor ex-ante. We incorporate parameter 

uncertainty by assuming an investor observes a signal for 

expected returns and volatility but does not know the true 

process for each and thus faces estimation risk, along the 

lines of Barberis (20 0 0) . 

5.1. What is the probability that ignoring volatility variation 

is optimal? 

The uncertainty surrounding our SMM parameter esti- 

mates indicates this probability is close to zero. We reach 

this conclusion by leveraging our SMM estimation to re- 

cover the uncertainty surrounding our parameter estimates 

and convert the uncertainty in this estimation to uncer- 

tainty about utility gains from volatility timing. We sample 

from the distribution of parameters recovered by the esti- 

mation (see Section 5 ) and solve for the optimal portfolio 

choice for each parameter realization. We then use the op- 

timal portfolio solution to calculate the elasticity of port- 

folio with respect to changes in volatility and to compute 

the utility gains from switching from the myopic buy-and- 

hold strategy to a volatility managed strategy (and to the 

fully optimal strategy). This approach allow us to recover 
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Table 8 

Estimation uncertainty. 

This table shows how estimation uncertainty impacts our results. We 

use our SMM estimation and optimal portfolio solution to recover the 

distribution of several features of the optimal portfolio policy. We show 

ζ , the local elasticity of the optimal portfolio to changes in variance 

ζ = −∂ log ( w 

∗)/ ∂ log ( σ 2 ) , the optimal linear portfolio loadings in the 

static buy-and-hold portfolio ( a ∗) and the myopic portfolio ( b ∗), and 

compare utility gains from alternative investment strategies. We report 

utility gains in terms of the annual fee (as a share of wealth) the naive 

buy-and-hold investor would be willing to pay to switch to a timing 

strategy. ΔU ∗ is the annual fee to the fully optimal strategy w 

∗( μt , σ 2 
t ) , 

and ΔU σ is the annual fee to switch to the optimal volatility timing 

strategy ˜ w 

σ ( σ 2 
t ) = a σ + b σ μ

γσ 2 
t 

. We report the 5%, 50%, and 95% per- 

centiles of the distribution of each quantity implied by our estimation. 

Quantity 5% 50% 95% 

ζ 0.60 0.76 0.93 

a ∗ 0.07 0.25 0.57 

b ∗ 0.98 1.01 1.04 

ΔU ∗ 1.61 3.01 6.25 

a σ 0.06 0.29 0.63 

b σ 0.64 0.84 0.95 

ΔU σ 0.60 2.04 5.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 Note that the estimation uncertainty we show here would be even 

larger if we were to consider imperfect predictors, that is, the investor 

only observes a noisy signal of μt , see Pástor and Stambaugh (2012) . 
the full distribution of the optimal portfolio elasticity and

the economic gains of volatility timing. 

The distribution of these quantities are shown in

Table 8 . The portfolio elasticity to volatility ranges from 0.6

to 0.9. This implies that the optimal response to a volatil-

ity increase is very likely to be a reduction in the weight

allocated to the risky asset. The economic gains of volatil-

ity timing reflect this large elasticity. We find utility gains

of volatility timing range from 0.6% to 5.5% in terms of an

annual equivalent fee. Thus, ignoring volatility variation is

extremely likely to be very costly. 

5.2. Imperfect information 

Our analysis so far endows investors’ with perfect in-

formation with respect to variation in the investment op-

portunity set, i.e., we assume the state variables are per-

fectly observed by the investor. In practice investors have

to form portfolios and trading strategies while facing un-

certainty about their conditional estimates of the expected

return and volatility. 

We investigate how sensitive the utility gains of volatil-

ity timing and expected return timing are to forecasting

uncertainty present in the data. This is important because,

as many papers have shown, parameter uncertainty sur-

rounding return predictability can have very large effects

( Barberis, 20 0 0; Goyal and Welch, 20 08; Cochrane, 20 08b;

Pástor and Stambaugh, 2012 ). We confirm these results but

show that uncertainty about conditional forecasts is not

a crucial issue for volatility timing. Our approach follows

closely the method described in Barberis (20 0 0) . 

Specifically, we take the perspective of an investor who

is given a 90-year sample for returns and who must es-

timate a rule to forecast returns and to forecast volatility

using this 90-year sample. The investor then permanently

adopts a portfolio timing rule based on this forecasting re-

lationship. We then compute the expected utility for the

investor going forward and compare this expected utility
to the case in which the investor knows the true process

for returns (as computed earlier). 

We begin by describing how we quantify uncertainty

about expected return forecasting. In a given 90-year sam-

ple, the investor observes the variable μt that is the true

conditional expected return for the risky asset, and uses

this variable to forecast returns in a given sample. 18 One

can think of this as running predictive regressions with a

candidate predictor such as the price-dividend ratio. The

regression the investor runs in each sample is 

r t+ 1 = βμ,0 + βμ,1 μt + ε t+ 1 , t = 1, . . . , T . 

The true value for this regression is βμ,0 = 0, βμ,1 = 1,

but the investor does not know this; he only sees μt as

a candidate predictor of returns. In estimating this regres-

sion using a given sample, s , the investor estimates βs 
μ,0

and βs 
μ,1 

, where these are the coefficients recovered in a

given sample. He then devises a trading strategy for what

he believe is the expected return process going forward us-

ing these coefficients as the fitted value from this regres-

sion 

ˆ μT + t , s = βs 
μ,0 

+ βs 
μ,1 

μT + t applied to the optimal port-

folio rule ˜ w ( μt , σ 2 
t ) described earlier in the paper. Notice

that if, given 90 years of data, the investor always recov-

ers the true coefficients βμ, 0 and βμ, 1 , then this would

be equivalent to the utility benefits of the full timing case

studied earlier. 

Next, we consider that the investor needs to make a

forecast for volatility. As was the case before with the re-

turn forecasting regression, the investor is given a perfect

signal, σ t , about volatility, but must use this signal in the

given sample to make a forecast about future volatility.

He uses this signal to try to forecast the volatility next

period. This is captured by r 2 
t+ 1 

− r t+ 1 
2 = βσ ,0 + βσ ,1 σ

2 
t +

ε t+ 1 where we study the variation in these coefficients

as before. Thus, the investor can poorly estimate the re-

lationship between realized volatility and true volatility—

analogous to the difficultly in predicting expected returns. 

We then ask what is the expected utility associated

with this rule given that these coefficients can vary from

sample to sample, i.e., given that, even with 90 years of

data, the investor may not know the true relationship be-

tween the predictor variable and future returns and future

volatility. These results are given in Table 9 for three differ-

ent sample sizes. We consider our baseline sample period

in which the investor has 90 years of data, and we also

consider the cases where the investor has 60 years or 180

years of data in which to estimate these relationships. Fi-

nally, we report the mean across many simulations as well

as the lower percentiles of the distribution. 

It turns out that the expected utility of the investor is

highly sensitive to estimation uncertainty only when the

investor tries to time expected returns (full timing col-

umn). The reason is that the estimated coefficients βs 
μ,0

and βs 
μ,1 

vary dramatically from sample to sample, even

with 90 years of data. This largely has to do with expected

returns being very persistent making the relationship
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Table 9 

The costs of estimation uncertainty. 

This table evaluates the robustness of adopting a volatility timing strategy and a full timing 

strategy with respect to parameter uncertainty. Specifically, we evaluate the utility costs when 

the investors must use a T -year sample to estimate a forecasting model for expected returns and 

volatility. We use sample sizes of 60, 90 (our sample size), and 180 years. Section 5.2 describes 

the calculation in detail. The last row shows utility gains when the investor faces no estimation 

uncertainty and knows the expected return and volatility signals (i.e., what the agent would re- 

alize with infinite data). Full timing means the agent times both expected returns and volatility, 

and volatility timing only times volatility. Both utility gain measures are given in percent per 

year relative to the naive buy-and-hold strategy that does not time either state variable. The 

first column reports the mean out of sample utility gain, and additional columns show the dis- 

tribution of utility gains once estimation uncertainty is factored in, focusing on the lower end 

of this distribution. 

Volatility timing ( ΔU σ ) Full timing ( ΔU ∗) 

Sample size (years) Mean 5% 10% 25% Mean 5% 10% 25% 

60.00 1.95 1.49 1.69 1.89 –0.54 –13.33 –5.48 0.40 

90.00 2.03 1.50 1.75 1.97 0.21 –8.93 –0.63 1.30 

180.00 2.10 1.58 1.89 2.07 1.70 0.16 1.27 1.84 

∞ 2.36 2.84 

 

in the predictability regression difficult to estimate in a 

given sample. This point is well recognized by Goyal and 

Welch (2008) , among others. When the investor only at- 

tempts to time volatility, estimation uncertainty turns out 

to be largely inconsequential, given 90 years of data, and 

the much lower persistence of volatility, the investor faces 

very low estimation risk. Table 9 contains these results and 

shows that the utility gains for volatility timing are essen- 

tially preserved when we take into account estimation risk. 

In both the return and volatility forecasts we assumed 

the investor had perfect signals of the true process—in 

practice this is much more likely to be true of volatility, as 

investors observe realized volatility and have signals like 

the VIX that give near perfect signals of volatility in real 

time. In contrast, it is less likely that the investor would 

have a perfect signal for expected returns. Thus, our anal- 

ysis here if anything understates the effects of parameter 

uncertainty on expected returns if one incorporates imper- 

fect predictors. 

In summary, because expected returns appear very per- 

sistent, predictive variables in a given sample can work 

poorly as forecasts for returns out of sample. This means 

that the benefits of timing expected returns are very sen- 

sitive to parameter uncertainty. We confirm this fact here, 

but this fact is well documented. However, this result is 

not true with volatility—this is essentially because volatil- 

ity is easy to forecast both in and out of sample. Hence, 

the utility gains from volatility timing are far more robust 

to parameter uncertainty. 

6. Extensions 

We consider a number of extensions to our model in- 

cluding alternative preferences and outside income risk, 

and we briefly discuss how these extensions might inter- 

act with volatility timing. 

6.1. The persistence of volatility shocks 

Our model for volatility is univariate and therefore 

is bound to miss the dynamics of volatility at some 
frequency. Previous work, most notably Chacko and Viceira 

(2005) and Campbell et al. (2016) , has focused on low fre- 

quency aspects of the volatility dynamics (see also Zhou 

and Zhu, 2012 ). This makes sense if the goal is to study the

level of hedging demands, as persistent variation in the op- 

portunity set typically generates larger hedging demands. 

Our goal in this paper is different. We are interested in- 

stead in quantifying the utility gains of timing volatility. 

For this question, not only the persistence but also the 

volatility of the state variable is important. Because of this 

goal we choose to fit dynamics of volatility at the monthly 

frequency. As a result of this choice out model misses the 

dynamics of volatility at lower frequencies. For example, 

while our estimated volatility process has a 12-month au- 

tocorrelation close to zero, the point estimate in the data is 

approximately 0.4. In this section we show that our results 

are not very sensitive to this choice. 

In Table 10 we present results when we target 3-month 

and 12-month autocorrelations of realized volatility in- 

stead on the 1-month we target in our baseline results. 

Gains from timing barely change; if anything, they increase 

slightly. Essentially, while focusing on lower frequency dy- 

namics changes the average hedging demand, it does not 

change much the conditional hedging demands enough to 

change our basic results. Moreover, lower frequency move- 

ments in volatility do not have any effect on the myopic 

demand at all (recall that this demand does not depend at 

all on the persistence of volatility), and this drives most of 

the benefits of volatility timing. Thus, while we acknowl- 

edge that the model is misspecified in terms of capturing 

both high and low frequency aspects of volatility, we argue 

that this will not have much effect on our results. This is 

essentially confirmed in Table 10 that shows strong ben- 

efits of volatility timing even when we target lower fre- 

quency movements in volatility. 

6.2. Alternative preferences 

Thus far we have studied Epstein–Zin (EZ) preferences 

with unit elasticity of intertemporal substitution. These 

preference are not only standard in the portfolio choice 
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Table 10 

Persistence of volatility shocks. 

This table repeats our analysis but uses a volatility process targeted at lower 

frequency movements in volatility. That is, we specify volatility as an AR(1) 

in logs, as before, but we estimate the persistence parameter to match 

quarterly and annual autocorrelations in volatility rather than only monthly 

ones. Thus, this table considers how our main results can change if we fo- 

cus on lower frequency movements in volatility. We report the data mo- 

ments for comparison. The sample is monthly from 1926 to 2015. We com- 

pare the utility from alternative portfolio strategies. The first, ˜ w 

∗( μt , σ 2 
t ) , 

is the optimal linear portfolio (with associated utility U [ ̃  w 

∗] ). The second, ˜ w 

σ ( σ 2 
t ) = a σ + b σ μ

γσ 2 
t 

, is the volatility timing portfolio. It is an approxima- 

tion of the optimal portfolio that is affine in the volatility managed port- 

folio μ
γσ 2 

t 

. The third is the myopic buy-and-hold portfolio w̄ = μ/( γ σ 2 ) . 

The row denoted ΔU ∗ shows the utility gain for an investor going from 

the myopic buy-and-hold portfolio to the optimal linear portfolio ( ΔU ∗ = 

U [ ̃  w 

∗]/ U [ ̄w ] − 1 ). The row denoted ΔU σ shows the utility gain for an in- 

vestor going from the buy-and-hold portfolio to the volatility timing port- 

folio ( ΔU σ = U [ ̃  w ( σ 2 
t )]/ U [ ̄w ] − 1 ). The last row shows the fraction of the to- 

tal utility gain from the optimal portfolio that is achieved with the volatility 

timing portfolio ( ΔU σ / ΔU ∗). Utility losses are in expected return units (e.g., 

ΔU ∗ = 1 is equivalent to a 1% per year gain). 

Frequency targeted: Data 1-month 3-month 12-month 

var ( log ( RV t )) 1.11 1.06 1.06 0.98 

cor r ( l og( RV t+ 1 ) , l og( RV t )) 0.72 0.73 0.79 0.85 

cor r ( l og( RV t+ 3 ) , l og( RV t )) 0.58 0.40 0.54 0.74 

cor r ( l og( RV t+ 12 ) , l og( RV t )) 0.45 0.03 0.11 0.42 

ζ 0.84 0.91 0.95 

ΔU ∗ 2.64 2.66 2.45 

ΔU σ 2.16 2.18 2.28 

ΔU σ / ΔU ∗ 81.89 82.19 92.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Alternative preference parameters. We plot the optimal response 

to volatility shocks as we change the IES from 0.2 (the CRRA case) to 1 

(our benchmark case) to 2. The top panel does this for our baseline model 

parameters, while the bottom panel does this for the case in which we 

allow changes in volatility to affect the discount rate share. 

 

 

 

 

 

literature but also very convenient, as we can directly con-

trol the investor horizon by varying the impatience pa-

rameter β . Alternative preferences studied in the literature

include (1) EZ preferences with nonunit EIS, (2) constant

relative risk aversion preferences (i.e., EIS = 1/RRA), and (3)

preferences with habit formation. 

Here we extend our analysis to (1) and (2). Fig. 4 show

these results by comparing impulse responses across pref-

erences. We normalize each portfolio weight by its steady

state value so we can focus exclusively of the weight elas-

ticity to a volatility shock. The top plot shows results for

the baseline assumption that the composition of volatil-

ity shocks is constant; we see that all investors respond

identically. In the bottom plot we see results for the case

in which volatility and the amount of mean reversion co-

move. More specifically, when all volatility variation is due

to variation in the volatility of transitory shocks to returns

(discount rate volatility). We discuss this case at length in

Section 4 . In this case we see differences across investors

responses as we vary the IES. Most interesting, we see that

high IES investors tend to respond less to a volatility shock

in this case. The reason behind this result is intuitive. In-

vestors with higher IES tend to be less responsive to dis-

count rate volatility because they optimally choose to save

more when the investment opportunity set is very attrac-

tive, i.e., because they are more willing to postpone con-

sumption their horizon is endogenously longer when the

opportunity set is more attractive. 

Case (3), habit, is substantially more complicated, as

it requires adding a habit state variable. We haven’t ana-

lyzed this case explicitly, but the analysis in Detemple and

Zapatero (1992) and Gomes and Michaelides (2003)
suggests that such preferences will lead us to similar re-

sults. For example, Detemple and Zapatero (1992) show

that habit formation leads investors to first invest in a

perfectly safe portfolio that finances habit consumption

and then invest as a standard CRRA agent that had only
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the residual wealth (the wealth minus the safe portfolio) 

would. Thus, they respond to a volatility shock as a CRRA 

agent with a similar allocation to the risky asset would. 

Their result suggests that while agents with habit forming 

preferences will invest much less in the market, their elas- 

ticity to a volatility shock is equal to a standard CRRA in- 

vestor. 

6.3. Nonfinancial income 

Our baseline analysis is purposefully stark, as it relies 

on the assumption that the investor’s only source of in- 

come is her financial wealth. A more realistic assumption 

is that the investor also earns wages or other sources of 

income. For example, Merton (1971) , Viceira (2001) , Cocco 

et al. (2005) , and Polkovnichenko (2007) are examples of 

recent work that study how nonfinancial income shape 

portfolio decisions. For the baseline case in which outside 

income is riskless, these papers show that optimal portfo- 

lio is simply 

w t 
W t 

W t + P DV t ( E) 
= 

μt 

γ σ 2 
t 

+ hedging demand , (21) 

where PDV t ( E ) is the present discounted value of the in- 

vestor nonfinancial income, W t is the investor financial 

wealth, and w t is the share of financial wealth invested in 

the risky asset. The solution implies that the investor tar- 

get the same share of total wealth allocated to the risky as- 

set, what implies a much higher share of financial wealth, 

as W t 
W t + PDV t ( E) < 1 . In this simple riskless case, the solution 

is analogous to the investor having a lower risk aversion, 

˜ γ = 

W t 
W t + PDV t ( E) γ . Thus, all our our result will carry through 

to this case. We simply need to use ˜ γ as the investor co- 

efficient of relative risk aversion. 

The impact of risk in the nonfinancial income stream 

can be understood by decomposing it in an idiosyncratic 

component that cannot be hedged or diversified and a 

component that covaries with the risky asset. Both com- 

ponents have the effect of reducing the present discounted 

value of the outside income. Intuitively, the higher the 

volatility, the higher the covariance between the income 

and the investor marginal utility. The end result is a higher 

discount rate. Again, our results will apply as in the risk- 

less case after adjusting the outside income present dis- 

counted value. The aggregate component has a second ef- 

fect because it not only impacts the value of the income 

stream, but it can also be hedged. The effect on the present 

value of the income stream is straightforward: a positive 

exposure increases the discount rate according to the risk 

premium earned in the risky asset. The covariance with 

the risky asset induces a new kind of hedging demand to 

emerge. Intuitively, the optimal portfolio choice adjusts for 

any exposure the investors income already has to the risky 

asset. A positive covariance thus induces a negative hedg- 

ing demand, reducing the share of the investor financial 

wealth allocated to stocks. 

While in practice, it is hard to find industries with 

wage income that is sufficiently strongly correlated with 

the stock market for these hedging demands to be large; 

more sophisticated modeling of labor income risk empha- 

sizes a long-run relation between the stock market and 
wages. For example, Benzoni et al. (2007) show that if la- 

bor income is cointegrated with dividends, the hedging de- 

mand can be large for empirically plausible parameters. 

Could this type of hedging demand overturn our results? 

As we have seen in Section 3.2 , a constant negative hedg- 

ing demand has the effect of increasing the elasticity of 

the portfolio weight to volatility. Thus, the “level” of the 

hedging demand will tend to amplify the optimal response 

to volatility. Our results can be overturned only if out- 

side income hedging demand increases with volatility so 

that it pushes the portfolio toward stocks when volatility 

is high. The logic of cointegration is that all permanent 

shocks to stock prices, i.e., cash flow shocks, end up even- 

tually impacting the labor income. Thus, variation in cash 

flow volatility should translate one-to-one to variation in 

the hedging demands, i.e., the hedging demand should be- 

come more negative in response to an increase in volatil- 

ity. Variation in discount rate volatility, on the other hand, 

would not impact the hedging demand in this case. Thus, 

this co-integration channel would either increase or not 

impact the portfolio elasticity to volatility. 

In order for the hedging demand to actually go up as 

volatility increases, the correlation between stock returns 

and wage income would have to go down enough to more 

than offset the increase in volatility. That is, a constant co- 

variance between wage income and stock returns is not 

sufficient to overturn our results. In fact, this covariance 

would have to be strongly negatively related to volatility in 

order for hedging demand to increase with volatility. We 

are not aware of any empirical evidence pointing in this 

direction. 

7. Conclusion 

We study the portfolio problem of a long-lived investor 

that allocates her wealth between a riskless and a risky 

asset in an environment where both volatility and ex- 

pected returns are time varying. We then comprehensively 

and quantitatively study how investors should respond to 

changes in volatility and what the utility costs to ignoring 

volatility variation are. We study how these results change 

with the investor’s horizon and which features of the re- 

turn dynamics we estimate are most important for our 

conclusions. Importantly, our analysis also takes into ac- 

count that investors face parameter uncertainty regarding 

the dynamics of volatility and expected returns. 

The main finding in this paper is that investors should 

substantially decrease risk exposure after an increase in 

volatility and that ignoring variation in volatility leads to 

large utility losses. The benefits of volatility timing are on 

the order of 2% of wealth per year for our preferred pa- 

rameterization of an investor with risk aversion of 5- and 

a 20-year horizon. These benefits are significantly larger 

than those coming from expected return timing (i.e., from 

return predictability), particularly when parameter uncer- 

tainty is taken into account. We approximate the optimal 

volatility timing portfolio and find that its dependence on 

volatility is very simple: all investors, regardless of hori- 

zon, will choose fixed weights on a buy-and-hold portfo- 

lio that invests a constant amount in the risky asset, and 

a volatility managed portfolio that scales the risky asset 
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exposure by the inverse of expected variance 1 / σ 2 
t . Fur-

ther, we show that the weight on the volatility timing

portfolio is independent of the investors’ horizon in our

baseline results. 

We then show a novel channel through which long-

horizon investors may differ in their response to volatility:

they respond less aggressively to increases in volatility

when only the volatility of mean-reverting shocks in-

creases. Intuitively, this effect makes stock prices more

volatile in the short run but doesn’t change the distri-

bution of long-run stock prices. Nevertheless, we provide

empirical evidence that this channel is not strong enough

to substantially decrease the gains from volatility timing. 
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