
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 183 (2019) 907–951

www.elsevier.com/locate/jet

Capital immobility and the reach for yield

Alan Moreira 1

University of Rochester, United States of America

Received 26 July 2017; final version received 20 June 2019; accepted 23 July 2019
Available online 31 July 2019

Abstract

I build a model in which financial intermediation slows down capital flows. Investors optimally learn 
from intermediary performance to allocate capital toward profitable intermediaries. Intermediaries reach 
for yield—i.e., they invest in high-tail-risk assets—in an attempt to drive flows and reduce liquidation risk. 
Intermediaries with strong opportunities face a trade-off between choosing a portfolio that maximizes prof-
itability, and choosing one that maximizes the speed at which capital flows. In equilibrium, reaching for 
yield is stronger among intermediaries with weak opportunities, resulting in a reduction in the informa-
tiveness of performance; investors thus take longer to learn, and capital flows become less responsive to 
performance. Capital becomes slow-moving because the reach for yield dampens learning. The model pre-
dicts capital immobility to be stronger when tail risk is high; when tail risk is under priced; and in asset 
classes with large cross-sectional variation in tail-risk exposures.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Despite the large and increasing share of wealth managed by financial intermediaries, a grow-
ing body of work documents that financial capital moves slowly (Duffie, 2010; Pedersen et al., 
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2007). At the same time, there is an emerging consensus that reaching for yield is widespread in 
the financial sector (Rajan, 2005, 2008, 2012; Stein, 2013). Financial intermediaries seem to over 
invest in high-yield high-tail-risk assets.2 These facts have important aggregate implications on 
their own, but they are also deeply intertwined. How can investors know where to allocate their 
capital, if intermediaries can manufacture “alpha” by loading on low-probability tail risks?

In this paper, I build a dynamic model of financial intermediation to study this connection. 
The model is centered on the interaction between intermediaries and investors’ capital allocation 
decisions. The key result of this model is that the reach for yield by intermediaries leads to capital 
immobility. Capital is endogenously slow-moving as a result of yield chasing by some interme-
diaries. The basic mechanism works as follows: financial intermediaries have strong incentives 
to improve short-term performance by loading on tail risks. Better performance improves their 
track record, attracts capital, and reduces the risk of liquidation. Incentives are particularly strong 
for intermediaries without good investment opportunities. These “opportunistic” intermediaries 
reach for yield more, dampening the performance advantage of “skilled” intermediaries. Inter-
mediary performance becomes less informative about the underlying quality of the intermediary. 
Investors take longer to learn, and capital misallocation persists for longer.

Thus, capital immobility is an endogenous result of investors’ optimal response to the incen-
tives intermediaries face. The key assumption is that investors cannot directly measure tail risks 
in the intermediary portfolio. As a result, loading on tail risks is particularly attractive to an in-
termediary. It boosts short-term performance without appearing in easy-to-measure forms of risk 
(like return volatility). The reach for yield delays the speed of learning to the extent that it is 
stronger among opportunistic intermediaries, which always happen in equilibrium. Intuitively, if 
all intermediaries were equally aggressive in their reach for yield, performance in a tail event 
would be completely uninformative. In this case, a more aggressive investment on high-tail-risk 
assets would enable the opportunistic intermediary to attract flows in the short term, without im-
pacting flows once a tail event hits. Thus, in equilibrium, the opportunistic intermediary must 
reach for yield more aggressively, resulting in less learning in the short term and more learning 
during a tail event. Because the opportunistic intermediary optimally balances out these com-
peting forces, the result is that the reach for yield by the opportunistic intermediary reduces the 
speed of learning and the speed of capital flows.

Reaching for yield by the skilled intermediary has the opposite effect. It increases the speed 
at which investors learn because it makes it harder for the opportunist to keep up with the perfor-
mance of the skilled type. However, it generates inefficient variation in investment flows across 
assets, reducing the expected returns earned by fund investors. Intuitively, as the skilled interme-
diary concentrates investments in high-tail-risk assets, the portfolio becomes poorly diversified, 
resulting in a fall in the portfolio’s Sharpe ratio and expected returns. Assets that are heavily 
exposed to tail risks are quickly inundated with capital as the intermediary attracts new capital 
flows. Assets that pay well during a tail event experience the opposite phenomenon. As investors 
pour capital into the intermediary, capital flows into these assets at a very low rate. Thus, when 

2 For example, Rajan (2005) argues: “A number of insurance companies and pension funds have entered in the credit 
derivative market to sell guarantees against a company defaulting. Essentially, these investment managers collect premia 
in ordinary times from people buying the guarantees. With very small probability, however, the company will default, 
forcing the guarantor to pay out a large amount. The investment managers are, thus, taking on tail risks, which produce 
positive returns most of the time as a compensation for a rare very negative return. These strategies have the appearance 
of producing very high alphas, so managers have incentives to load on them.”
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the skilled intermediary reaches for yield more aggressively, the future allocation of capital im-
proves faster, but the present allocation of capital gets worse.

An example is useful to illustrate how the decisions of the skilled intermediary shape the 
allocation of capital. Suppose the maximum alpha of the skilled type is 5% and it is achieved 
with a zero tail exposure. Suppose further that any intermediary can manufacture 5% alpha by 
loading on tail risks. If only the opportunist reaches for yield, short-term performance differences 
across types disappear. As a result, learning stalls and capital ceases to move in the short term. 
Given the allocation of capital to each intermediary, the allocation of capital is the most efficient 
as it achieves the highest expected return. However, from a dynamic perspective, the allocation 
of capital is the worst as capital ceases to move to the intermediary that allocates capital better. 
Now consider the case in which the skilled type also reaches for yield. The fund alpha declines 
to 4% as her portfolio deviates from the maximum expected return portfolio, but the short-term 
performance increases to 7% as the portfolio becomes more concentrated on high-tail-risk assets 
that over perform in the short term. In this case, short-term performance is again informative 
and capital more mobile. Capital flows faster to the good capital allocator, even though expected 
returns are lower and the allocation of capital is worse. This trade-off between the present and 
the future allocation of capital is a key insight from the model.

A novel insight that emerges from the model is the feedback loop between the reach-for-yield 
behavior of both investors and intermediaries. The closer an intermediary is to liquidation, the 
stronger the incentives to reach for yield. The increase in incentives to reach for yield is particu-
larly strong among good intermediaries who have the most to lose from liquidation. The relative 
change in incentives drives investors to expect larger short-term performance differences across 
intermediaries. Thus, after bad performance, investors naturally respond more aggressively to 
short-term performance as short-term performance becomes more informative. This response 
further amplifies the incentives to reach for yield. This reach-for-yield spiral implies that flow-
performance sensitivity is a nonlinear function of past performance.

The model makes several predictions that apply to investment vehicles that raise demandable 
equity capital from arms-length investors—such as mutual funds, hedge funds, and some private 
equity funds—and that have flexibility in their investment mandate to choose their assets, i.e., 
the theory applies to active managers. The theory does not require that these intermediaries have 
the ability to directly make clean tail-risk bets using options, but simply requires that there is 
cross-sectional variation in asset tail risk that can be identified by the expert but not by her 
investors.3

The first set of predictions relates capital immobility to fund characteristics. Funds with more 
flexible investment mandates, or with mandates to invest in assets with relatively greater cross-
sectional variation in tail risk, exhibit a weaker and more concave relationship between flows 
and performance. Intuitively, an opportunity set with greater variation in tail risk provides the 
intermediary with more freedom to invest in high-tail-risk assets without changing observable 
measures of portfolio risk. There is evidence that these predictions hold in the data for asset 
classes in which the manager has more flexibility, such as private equity (Kaplan and Schoar, 
2005) and hedge funds (Goetzmann et al., 2003), as well as for asset classes with a relatively 
large cross-sectional variation in tail risk, such as corporate bonds (Goldstein et al., 2015).

3 See, for example, work by Kelly and Jiang (2014) that documents large cross-sectional variation in tail-risk exposures 
across U.S. equities.
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The model provides a novel explanation for the evidence in Kacperczyk and Schnabl (2012), 
who documented a large increase in reach for yield across money market fund managers and in-
vestors, and who attributed this increase to a lack of market discipline.4 In the model, investors’ 
understanding of fund manager incentives amplifies the reach-for-yield behavior of both investors 
and managers. It is the market discipline imposed by investors—i.e., the threat of liquidation—
that drives the rampant reach-for-yield behavior.

Perhaps even more strikingly, the model is consistent with the very persistent overpricing of 
senior tranches of collateralized debt obligations (CDOs) and the concomitant underpricing of 
junior tranches documented by Coval et al. (2009). Intuitively, the model implies capital flows 
faster toward the most senior tranches that have relatively higher tail exposure. This results in 
under investment in the junior tranches and over investment in the senior tranches.

The model has several implications for financial stability. First, tail risks tend to concentrate 
in the portfolios of financial intermediaries. Second, it suggests that capital reallocation is par-
ticularly slow when tail events are more likely. Third, tail risks are more likely to build up in 
relatively low-risk asset classes, where volatility is a particular poor proxy for tail risks.5 Fourth, 
the model predicts that reaching for yield is stronger in low-interest-rate environments, which 
is consistent with recent empirical evidence (Choi and Kronlund, 2014) and the view of leading 
policymakers (Rajan, 2005, 2012; Stein, 2013).

The remainder of the paper is organized as follows. After a brief discussion of the literature, 
Section 2 presents the model setup and characterizes the model solution. I study two economies: 
a benchmark economy where tail risk is readily observable by investors, and an economy where 
tail risk cannot be directly measured. In Section 3, a numerical calibration is used to illustrate the 
implications of the model.

Literature review. This paper relates to a growing body of literature that focuses on implicit in-
centives that are induced by investor behavior. Chevalier and Ellison (1997); Basak et al. (2007); 
Chapman et al. (2009); and Basak and Makarov (2014) studied implications for manager port-
folio choice, while Brennan and Li (1993), Shleifer and Vishny (1997), Vayanos (2004), Cuoco 
and Kaniel (2011), Basak and Pavlova (2013), and Kaniel and Kondor (2013) studied the impli-
cations of these implicit incentives for asset pricing. These authors took the behavior of investors 
as given and studied the implications for portfolio choice and equilibrium pricing.

A second strand of literature relevant to this paper studies learning in money management. 
Berk and Green (2004) showed that the behavior of fund flows and lack of persistence in fund 
performance could be explained by investors’ use of fund performance to learn about their man-
agers. Pastor and Stambaugh (2010) relied on a similar idea to explain the dynamics of the size 
of the money-management industry. Berk and Stanton (2007) built on these ideas to explain the 
closed-end fund discount, while Dangl et al. (2008) studied the effect of learning on the opti-
mal replacement of a manager. More broadly, Kozlowski et al. (2016) showed that tail risk can 
slow down learning substantially. They used this connection to explain the slow recovery af-
ter the 2008 financial crises. My work is very different, in that it highlights how tail risks and 
intermediaries interact in a way that endogenously slows down learning.

This paper connects these two sides of the literature, and studies an environment where learn-
ing is endogenous to the manager’s trading behavior. The previous work that emphasized the 

4 For example, investors either believed in an implicit government guarantee or neglected the magnitude of the tail 
risks.

5 Extreme examples of this disconnect between volatility risk and tail risk are the money market funds studied in 
Kacperczyk and Schnabl (2012) and the different CDO tranches analyzed by Coval et al. (2009).
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dynamics of investor learning has mostly abstracted from the interaction between portfolio choice 
and learning by either simplifying the investment opportunity set or arguing that the investment 
opportunity set was “sufficiently non-stationary,” which made this type of endogenous response 
by fund investors infeasible (Shleifer and Vishny, 1997). This paper contributes to the agency 
literature by showing that learning and manager incentives interact in powerful ways. A novel 
feedback loop between the reach-for-yield behavior of investors and managers emerges, produc-
ing amplification and time variation of reach-for-yield incentives.

My paper is more closely related to the literature that connects the agency and learning views, 
which is founded on the signal-jamming framework of Holmstrom (1999). Dasgupta and Prat 
(2008) and Dasgupta et al. (2011) studied the effects of fund managers’ reputation concerns 
on asset pricing in a model where prices were determined by a market maker. Vayanos and 
Woolley (2013) showed that learning about manager efficiency had the potential to explain the 
momentum effect. Acharya et al. (2013) also developed a model in which reputation concerns 
slowed down the identification of good managers. The authors assumed that learning had to start 
again every time the manager switched to a new project, creating an incentive for managers to 
switch projects inefficiently to mitigate their reputation risk. This paper focuses instead on the 
choice of the payoff distribution and applies more directly to financial intermediaries. Makarov 
and Platin (2015) studied optimal contracting in the case of symmetric information between 
investors and managers. My paper emphasizes the role of asymmetric information and the link 
with the speed of capital flows, but takes the contractual environment as given.

The papers most related to my work are Guerrieri and Kondor (2012), Malliaris and Yan 
(2015), and Di Maggio (2014). These papers studied the impact of reputation concerns on the 
willingness of a fund manager to invest in strategies that paid well with a low probability. Guerri-
eri and Kondor (2012) emphasized excess volatility, i.e., how changes in reputation concerns can 
drive risk premia. Malliaris and Yan (2015) showed that reputation leads managers to avoid bets 
that pay poorly most of the time. Importantly, none of these showed how reach for yield lead to 
capital immobility, i.e., a reduction in the speed of capital reallocation to good capital allocators. 
My paper is the first to show a fundamental trade-off between static and dynamic capital allo-
cation. Specifically, when skilled intermediaries over-allocate to high-yield assets, they reduce 
the quality of capital allocation in the short term, but they increase the speed at which capital 
allocation improves.

2. Model

Let’s consider that time is continuous t ∈ [0, ∞) and the economy is populated by a large mass 
of investors (denoted by I) and one financial expert (denoted by E).6 Both agents are risk-neutral 
and discount the future at the risk-free rate of interest ρ.

Investors supply capital to the financial expert. The expert has no wealth, earns zero if unable 
to attract capital, and invests in a risk-free technology, whose net return is ρdt , and in n risky 
technologies, whose net returns in excess of the risk-free rate are given by

dRθ
t = μθdt + σdBt −

[
(
√

φZt + κ)dJt − λκdt
]
, (1)

where θ denotes the expert type, discussed in detail below, and μθ is the vector of expected 
returns of the risky technologies; Bt denotes an n-dimensional Brownian motion capturing 

6 The model setup also directly extends to the case of multiple experts. For details, see discussion in the end of the 
model setup.
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normal-times idiosyncratic risk; and Jt is a (univariate) Poisson process with intensity λ. I refer 
to the Poisson arrival dJt = 1 as a tail event. In a tail event, the risky technologies suffer losses 
given by κ + √

φZt . The vector of tail exposures κ captures the systematic exposure of each 
technology to the tail event, and 

√
φZt captures idiosyncratic risk. Idiosyncratic risk is normally 

distributed as Zt ∼ N (0, �), where � = σσ ′ is the n by n return covariance matrix during nor-
mal times. The scalar φ > 0 controls the increase in idiosyncratic risk during a tail event. The 
yield of an asset is simply its expected return in the absence of tail events μθ +λκ . In the model, 
reaching for yield takes place when experts tilt their portfolios toward assets with high yields 
rather than high expected returns.

Let μ+
θ be the maximum Sharpe ratio attainable by expert type θ , i.e., μ+

θ =
√

μ′
θ�

−1μθ , and 

κ+ = √
κ ′�−1κ the maximum tail exposure. In the baseline analysis, we assume μ′

θ�
−1κ = 0, 

i.e., that tail risk does not carry a risk premium.7

Expert types. Experts come in two types. The skilled type (θ = S) has an investment opportu-
nity set with a Sharpe ratio μ+

S > 0, and the opportunistic type (θ = O) has a Sharpe ratio equal 
to zero (μ+

O = 0). Investors observe the fund returns, but do not observe the expert type θ or the 
fund portfolio.8 Their information can be represented by F I

t = {dRs : s ≤ t}. Because investors 
observe the fund return history continuously, tail events dJt are perfectly observable due to the 
discontinuous movement in fund returns they generate. Experts know their type and their infor-
mation, which can be represented by FE

t = {(dRs, θ) : s ≤ t}. At date 0, investors believe there 
is a probability Pt that the expert is skilled (θ = S). I refer to Pt as the expert reputation.

Opportunities are scarce. The expert faces decreasing returns in their ability to invest in prof-
itable opportunities. Let Qt be a 1 × n row vector of allocations that describe how the expert 
allocates capital across the n technologies, where at is the fund assets under management, and 

σr,t =
√

Qt�Q�
t is the fund return volatility. The expert faces transaction costs that increase 

with the total size of the fund portfolio, as assumed in Berk and Green (2004). In my model, 
portfolio size is captured by the fund asset volatility atσr,t . Specifically, I assume a cost function 
c(atσr,t ) > 0, with c′(·) ≥ 0. More specifically, I assume in most of this paper that this cost func-
tion is quadratic. In Appendix B, I provide a micro-foundation for this cost function based on the 
assumption that each expert has access to a unique local market where they trade assets against 
mean-variance investors with hedging needs.9

Financial contracts. The expert raises capital from investors through a fund management con-
tract. Here, I assume instantaneous contracts, where the expert quotes an intermediation fee 
ft ≥ 0 per dollar managed period by period. Further, as is standard in the principal-agent lit-
erature, I assume that when the expert is indifferent across portfolios, the expert will do the best 
thing for their investors. Specifically, I assume the expert places weight m ≥ 0 on maximizing 

7 More precisely, μ+
θ is the maximum ratio of expected returns to the square root of the instantaneous quadratic vari-

ation (normal-times return volatility) across these technologies. We relax the assumption that tail risk has zero premium 
in Section 3.5.3.

8 Investors can observe portfolios, as they do in mutual funds, as long as they do not distinguish individual assets’ tail 
exposures and expected returns.

9 This local market micro-foundation also motivates the heterogeneity in expert skill and the idiosyncratic risks that 
each expert faces.
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the fund Sharpe ratio. Because of quadratic transaction costs, investors’ utility is increasing in 
the fund Sharpe ratio.10

Equilibrium. I use perfect Bayesian equilibria as the equilibrium concept. Here, this concept 
has three implications: (i) investors take as given their own beliefs and the behavior of experts 
when choosing how much to invest; (ii) experts take as given the behavior of investors and in-
vestors’ beliefs when choosing how to allocate capital; (iii) and investors’ beliefs about the expert 
choices are consistent with expert choices, and investors update their beliefs about the type of 
expert according to Bayes’ rule. I look for a stationary Markov equilibrium in which the only 
state variable is the expert’s reputation Pt .

Discussion of the model setup. There are two key information frictions: I assume that the 
skilled expert has no credible channel to directly communicate either the quality of her in-
vestment opportunities or the tail exposures of her portfolio. The first assumption implies that 
investors must rely on an expert’s past returns to learn about the expert type.11 The assumption 
that the portfolio tail exposure cannot be observed implies that investors cannot adjust how they 
learn about an expert according to the tail exposure choice of the expert. Investors must instead 
rely on their own beliefs about the expert’s portfolio choice.12

The existence of multiple technologies allows experts to change their tail exposure indepen-
dently of fund volatility. Thus, volatility does not reveal the expert tail exposure. We will see that 
the opportunity set implicit in Equation (1) is spanned by two portfolios: one with the maximum 
Sharpe ratio and the other with the maximum tail exposure (per unit of volatility). However, 
the n-asset implementation allows a more transparent analysis of how the speed of capital flows 
depends on the asset tail exposure.

I focus on the case of a single expert, but the setup extends to the case where investors can 
observe and invest in multiple experts. Intuitively, the return history of other experts reveals 
no information about the shock history of a particular expert, because dB and Y shocks are 
idiosyncratic and the common tail event shock is observable by investors. Experts should be 
thought as investing in different set of assets or trading strategies (the shocks dB and Y are 
idiosyncratic) and this different opportunity set is the driver of their heterogeneity in expected 
returns μθ . The assets are different, but exposed to a common shock dJt which is a systematic 
shock hitting all asset markets simultaneously.

The key economic force driving an expert’s portfolio decision is reputation concerns due to 
learning. The weight m is only useful for pinning down the expert’s optimal portfolio when 
reputation concerns converge to zero. Theoretically, this only happens when Pt = 1, but because 
I solve the model numerically, a positive weight m is useful more broadly.13 See Appendix D for 
additional discussion of the model setup.

10 More broadly, one can think of m as the sensitivity to performance of compensation incentives. Recent evidence 
documented in Ma et al. (2019) shows that managers are often compensated on a risk-adjusted basis by fund management 
firms.
11 While I rule out all forms of communication in the model, one can think of the initial expert reputation P0 as 
the outcome of a “pre-trading” communication round. What is important for the model is that there is some residual 
uncertainty about the expert type after this communication round, so investors use returns to learn about the expert. The 
extensive empirical literature on mutual funds and hedge funds flows is consistent with this assumption.
12 The opaqueness of the fund portfolio is motivated by the idea that the experts have a unique understanding of the 
assets they trade, and even though investors fully understand the environment, they are unable to evaluate expected returns 
or tail risks of specific portfolio positions.
13 In section 2.5, I consider a case where I can solve the model analytically with m = 0.



914 A. Moreira / Journal of Economic Theory 183 (2019) 907–951
Discussion of the model solution. Investors’ learning behavior and the expert’s portfolio pol-
icy are jointly determined in equilibrium. I choose to first solve the investor learning problem, 
and then later characterize the expert portfolio policy. This order is useful because it more trans-
parently illustrates some general features of how the learning dynamic depends on the expert 
portfolio policy.

2.1. Learning

Let us first turn out attention to how investors learn about experts. Specifically, how should 
investors update their beliefs about the manager type θ , given an observed history of returns of 
an expert {dRs, s ≤ t}? Here is what they do: investors make conjectures about the equilibrium 
portfolio of each expert type, and then use differences in the implied conditional performance 
distributions to learn from the expert realized performance. In this section, I characterize in-
vestors’ optimal learning policy, while I take as given investors’ conjectures about equilibrium 
portfolios (Proposition 1). I then study the consequences for the learning dynamics of changes 
in these equilibrium portfolios. In particular, I show that learning is slower if the opportunistic 
expert reaches for yield, while learning is faster if it is the skilled expert that takes this action 
(Corollary 1.1).

Some general features of the equilibrium need to first be discussed. In the current setting, 
any equilibrium features a pooling of experts on observables. Opportunists can always mimic 
the skilled experts’ choices, and never choose to separate from skilled types because that would 
imply immediate liquidation. This implies that observable quantities (portfolio volatility and 
fund assets) must depend only on reputation, and cannot depend on the expert type. Importantly, 
portfolio opaqueness implies that each expert can change the tail risk of their portfolio without 
affecting how investors interpret the expert performance.

Without loss of generality, we can decompose the expert portfolio choice in terms of a volatil-
ity choice and a portfolio composition choice for a given volatility. Specifically, portfolio Qt can 
be decomposed as Qt = Xtσr,t , where σr,t = Qt�Q�

t and Xt ∈ 	 = {X ∈ RM |X�X� = 1}. 
Therefore the expert choice can be represented as a volatility choice σr,t and a portfolio vector 
choice Xt with unit-variance. This decomposition is useful because it separates the component 
of the expert decisions that is observable by investors from the unobservable component. This 
decomposition implies that fund excess returns (gross of fees) per unit of volatility can be written 
as

drθ
t ≡ QtdRθ

t

σr,t

= Xt [(μθ + κλ)dt − κdJt ] + dBt + φ
1
2 ztdJt − c(atσr,t )

atσr,t

dt. (2)

Holding the expected return constant, a higher tail exposure increases the fund yield, i.e., the 
fund performance in any period without a tail event. For this reason, I refer to the fund yield 
Xt(μθ + λκ) as the fund normal-times performance. Because Xt is a unit-variance portfolio, it 
follows that XtσdBt = dBt and zt = XtZt are both univariate (standard) normals.

It is mathematically convenient to represent investors’ beliefs in log-likelihood ratio space. 

Given a liquidation threshold P , the log-likelihood distance to liquidation is p = log
(

P
1−P

)
−

log
(

P
1−P

)
. I refer to both P and p as reputation.14

14 The mapping from probability to log-likelihood is injective, and therefore without loss. I abuse notation and refer to 
functions that were defined in the probability space as if they were defined in the log-likelihood space.
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The I superscript is used to denote investors’ beliefs about a random variable. For example, 
I write XI (p, θ) = EI [X(p, θ)] to denote investors’ beliefs about the portfolio of an expert of 
type θ and reputation p.

A simple application of Bayes’ rule in continuous time implies the following dynamics for 
investors’ beliefs:

Proposition 1. Investor learning about expert skill. Given investor beliefs XI(p, θ), the expert 
reputation pt satisfies,

dpt = g(pt )
(
drθ

t− − e (pt ) dt
) + gJ (pt )φ

−1 (
drθ

t − eJ (pt )
)
dJt (3)

for pt > 0 and dpt = 0 if there exists s ≤ t such that ps ≤ 0, with learning coefficients given by

gJ (pt ) =
(
XI (pt ,O) − XI (pt , S)

)
κ, (4)

g(pt ) = XI (pt , S)μS − λgJ (pt ), (5)

eJ (pt ) = −1

2
(XI (pt , S) + XI (pt ,O))κ, (6)

e (pt ) = 1

2
XI (pt , S)μS − λeJ (pt ) . (7)

Optimal learning in this environment consists of comparing the likelihood that a given return 
realization was generated by each expert type: θ ∈ {S, O}. Learning takes place in both “normal 
times” and “tail events.” In both states, the statistical learning problem investors face is how 
to differentiate between two normal random variables of identical variance but different means. 
The coefficients g(pt ) and gJ (pt ) track differences in expected performance across experts in 
each state dJ ∈ {0, 1}. For example, during normal times g(pt) ≡ EI

t

[
drS

t− − drO
t−

]
, which is 

the difference in normal-times performance across types. Naturally investors learn more from 
returns when this signal-to-noise ratio is high. Return surprises are measured relative to how a 
p-reputation expert is expected to perform in each state. Specifically, e(p) and eJ (p) measure the 
expected average performance of a p-reputation expert. Because I am working in log-likelihood 
space, these expectations are a simple average across the types’ expected returns in each state.

We obtain the speed investors learn in equilibrium by simply imposing that investors’ beliefs 
must be consistent with experts’ equilibrium portfolio policies (XI(p, θ) = X(p, θ)),

Et [dpS
t − dpO

t ] = (X(p,S)μS)2

[(
1 − gJ (p)λ

X(p,S)μS

)2

+ 1

λφ

(
gJ (p)λ

X(p,S)μS

)2
]

, (8)

where the ratio gJ (p)λ/X(p,S)μS captures the amount of “performance jamming” done by 
the opportunistic expert in equilibrium. This is the fraction of the performance advantage of the 
skilled expert that the opportunist makes up by taking more tail risk than the skilled type. When 
both types have the same tail exposure, gJ (p) = 0, their reputations diverge at the rate of the 
squared Sharpe ratio difference across types.15 This learning speed is a natural benchmark, since 
it is the rate at which investors would learn if the opportunistic type were not strategic about 
his portfolio choice. Corollary 1.1 below starts by defining two basis portfolios, referred to as 
Sharpe and Tail portfolios, that together span the experts’ investment opportunity set, and then 

15 It is simply the squared Sharpe ratio of the skilled type, since the opportunist Sharpe ratio is normalized to zero.
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shows how the learning speed changes as each expert tilts their weight from the Sharpe to the 
Tail portfolio.

Corollary 1.1. Reaching for yield and the speed of learning. Let the Sharpe portfolio be given 

by weights Xμ = �−1μS

μ+
S

and the Tail portfolio be Xκ = �−1κ
κ+ . Then it follows:

(1) If both experts hold the Sharpe portfolio, the speed of learning is (μ+
S )2.

(2) If both experts hold the Sharpe portfolio, a small increase in the opportunistic expert 
position in the tail portfolio decreases the speed of learning.

(3) If μ+
S > (λ + 1

φ
)κ+, the skilled expert holds the Sharpe portfolio, and the opportunist 

expert holds the Tail portfolio, then the speed of learning increases in the skilled expert position 
on the Tail portfolio.

Corollary 1.1 above starts by defining the two basis portfolios. I will show that the experts’ 
optimal portfolio choice is always a combination of these two portfolios. While I have not charac-
terized the optimal behavior yet, Result (2) in Corollary 1.1 above shows that the opportunist can 
reduce the speed of learning by increasing performance in states when informativeness is high 
(normal times) at the expense of lower performance when informativeness is low (tail events), 
i.e., reach for yield by the opportunist reduces the speed of learning. Result (3) in Corollary 1.1
focuses instead on the skilled-type tail exposure choice. This result implies a trade-off between 
the (static) allocation of capital and the speed of learning. There is a trade-off here because the 
skilled expert can increase the speed of learning by reaching for yield, which reduces expected 
returns and makes capital allocation worse in the short term. However, we will see that faster 
learning enables capital to flow faster to the skilled expert, who allocates capital better than the 
opportunistic type. This trade-off between the static and dynamic allocation of capital is one of 
the key trade-offs in this paper.

2.2. Financial experts

I now solve the expert portfolio allocation problem. The key goal of this section is to charac-
terize experts’ optimal portfolio in terms of a pair of incentive functions (Propositions 3 and 4). 
Here, I take as given the learning dynamics and the capital supply policies that investors follow.16

The financial expert maximizes the net present value of their compensation flow plus the weight 
m they place on maximizing their portfolio Sharpe ratio. The expert chooses the fee policy f and 
the portfolio policies σr and X:

sup
f,σr ,X

EE
u

⎡⎣ ∞∫
u

e−ρ(t−u) (mXtμθ + atft ) dt

⎤⎦ s.t. Xt ∈ 	,ft ≥ 0, σr,t > 0. (9)

The nonnegative fee constraint implies the expert cannot make payments to investors to de-
lay/avoid liquidation. The experts’ problem depends on investors’ beliefs pt because they shape 
investors’ decision of how much capital to allocate to the expert. It is the investors’ capital allo-
cation decisions that makes the experts’ problem dynamic. Thus, the Hamilton–Jacobi–Bellman 
equation for the expert can be written as,

16 Investors’ capital supply policies are characterized in Section 2.4.
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(ρ + λ)V (pt , θ)

= sup
{X,σr ,f }∈	×R2+

mXμθ + atf + Vp(pt , θ)g(pt ) (X(μθ + λκ) − e(pt )) (10)

+ 1

2
Vpp(pt , θ)g2(pt ) + λEz

[
V

(
pt − gJ (pt )

φ

(
Xκ + √

φz + eJ (pt )
)

, θ

)]
,

for pt ≥ 0, with the boundary condition V (p, θ) = 0 for any p ≤ 0. The expectation Ez[] is taken 
over the standard normal random variable z.

On the left—hand side, we have the effects of discounting due to the passage of time (ρ) and 
the arrivals of tail events (λ). The first two terms on the right—hand side (RHS) of the first line 
capture the instantaneous compensation flow. The third term captures the valuation effects of 
reputation growth during normal times. On the second line, we first have the effects of reputation 
risk during normal times. The last term captures what happens with reputation during a tail 
event: the expert’s reputation jumps to a new and uncertain value because of the lumpy amount 
of information revealed during a tail event.

The portfolio choice X appears in the compensation term, in the normal-times reputation 
growth term, and on the tail-event term. Importantly, it does not show up on the investors’ learn-
ing coefficients, which only depend on the expert’s equilibrium choice.

A benchmark: portfolio choice when the fund is transparent. In this case, investors can con-
dition on the experts’ tail exposure and the opportunistic expert pools with the skilled type in 
order to remain undetected. Both types have the same tail exposure, thus tail event performance 
is uninformative, and the difference in normal-times performance across types solely reflects 
each expert’s expected returns. Formally, transparency implies gJ (pt ) = 0 and eJ (pt ) = −Xκ . 
Rearranging the first-order condition with respect to the portfolio choice, substituting both the 
learning coefficients and the definition of the Sharpe portfolio, I obtain

X∗ = Xμ × μ+
S (m + Vp(p,S)g(p))/ζ, (11)

where ζ is the Lagrange multiplier associated with the unit-variance constraint.17 Proposition 2
summarizes the equilibrium in this case18:

Proposition 2. Learning speed when portfolios are transparent. If X�
t κ ∈ F I

t , then (i) X(p, S) =
X(p, O) = Xμ, (ii) E[dpS

t − dpO
t ] = (μ+

S )2.

The intuition for this result is as follows. Equation (11) above implies the optimal portfolio 
is proportional to the Sharpe portfolio. Because reputation concerns Vp(pt , S)g(pt ) are weakly 
positive in equilibrium, the expert has always a long position in the Sharpe portfolio. This implies 
that her optimal portfolio is simply the Sharpe portfolio given that her portfolio choice X must 
also have unit variance.19

Portfolio choice when the fund is opaque. When investors do not observe the fund tail expo-
sure, the learning coefficients only depend on investors’ beliefs about experts’ portfolios, and the 
opportunistic expert no longer has to pool with the skilled type.

17 Note that the expert is free to choose a portfolio of any volatility, but because volatility is observable by investors 
while the rest of the portfolio is not, it is important to deal with these two decisions separately. The choice of portfolio 
volatility is studied in Section 2.4.
18 See Corollary 2.1 in Appendix A for an analytical characterization of the experts’ value functions in this case.
19 Note that we study the choice of portfolio volatility in Section 2.4.
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Rearranging the first-order condition associated with Equation (10), and omitting the depen-
dence on pt and θ for expositional convenience, I obtain that the optimal portfolio is a weighted 
average of the Sharpe and Tail portfolios,

X∗ = Xμμ+
θ

(
m + Vpg

)
ζ

+ Xκλκ+ Vpg − gJ

φ
Ez

[
Vp (pt+, θ)

]
ζ

, (12)

where p+ denotes the reputation of the expert after a tail event. The weight on the Sharpe port-
folio consists of the performance weight m and the normal-times reputation concerns Vpg. The 
weight on the Tail portfolio is simply the net effect of reputation concerns during normal times 
and tail events. Normal-times concerns push the expert to reach for yield and increase the weight 
on the tail portfolio, but reputation concerns during a tail event push this weight down. The expert 
will reach for yield aggressively whenever normal-times concerns dominate. This happens when 
the expert’s reputation is low. Intuitively, the expert will be more concerned with her short-term 
reputation evolution when she is close to liquidation.20

Focusing on the extreme cases is useful for intuition. If tail-event volatility φ → ∞ and the 
weight m → 0, we have that the expert chooses X∗ ∝ μ+

θ Xμ + λκ+Xκ , which is the portfolio 
that maximizes the fund yield. Conversely, if the expert has identical reputation concerns across 
normal times and tail events, then Vpg = gJ

φ
EE

[
Vp (pt+, θ)

]
, and the skilled expert portfolio 

policy is to maximize expected returns, X∗ = Xμ. It is the wedge in reputation incentives be-
tween normal times and tail events that drives the expert to reach for yield.

Equation (12) characterizes the optimal choice implicitly as the solution of an n-dimensional 
fixed point problem. Intuitively, the expert’s portfolio influences her expected reputation after a 
tail event pt+ = pt − gJ

φ

(
Xκ + √

φz + eJ

)
, and the change in reputation impacts her reputation 

concerns because of the concavity of her value function. This feeds back into her portfolio choice. 
In the reminder of this section, the problem of each expert separately analyzed, in order to further 
characterize optimal behavior.

Skilled portfolio. I will start by showing that the skilled expert’s multi-dimensional portfolio 
choice can be represented with a scalar y that summarizes the expert’s net investment incentives.

Lemma 1. Scalar representation of the skilled portfolio. For any optimal portfolio X for the 
skilled expert, there is a scalar y such that X (y) = X, where

X (y) ≡ μ+
S√

(μ+
S )2 + (λκ+)2y2

Xμ + λκ+y√
(μ+

S )2 + (λκ+)2y2
Xκ. (13)

The denominator in Equation (13) rescales weights so that X (y) is unit-variance. The scalar 
y can be interpreted as the expert reach-for-yield incentive, because it measures how much the 
expert values an increase in yields relative to expected returns. If the expert only cares about 
expected returns, then y = 0. If she only cares about yield, then y = 1. If she only cares about tail 
performance, then y = ∞. Going forward I represent the skilled choice and investors’ conjectures 
about this choice in terms of y and yI .21

20 I will show that in equilibrium V () is increasing and concave, g(pt ) ≥ 0, and gJ (pt ) ≥ 0; thus an increase in the 
portfolio tail exposure increases reputation growth during normal times at the cost of a reduction in reputation growth 
during tail events.
21 There is a one-to-one mapping between incentives y and the skilled expert portfolio.
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I now substitute out the learning coefficients in Equation (12) and represent the optimal 
weights on the two basis portfolios as a function of incentives y, investors’ beliefs about 
these incentives yI , and investors’ beliefs about the difference in tail exposures across types 
gI

J (p) = XI (p, O)κ −X (yI )κ . I then construct the function that characterizes the expert incen-
tives y by collecting the terms that multiply the Sharpe portfolio Xμ and the Tail portfolio Xκ , 
and normalizing the latter by the former.

Proposition 3. Skilled expert portfolio choice. For a given reputation p and investors’ beliefs 
about the experts’ portfolios, gI

J and yI , the skilled expert incentives solves y =DS(p, y|gI
J , yI ), 

where DS is

DS(p, y|gI
J , yI )

=
(X (yI )μS − λgI

J )Vp − λ
gI
J

φ
Ez

[
Vp

(
p − gI

J

φ
×

(
X (y)κ − 2X (yI )κ+gI

J

2 + √
φz

)
, S

)]
m + (X (yI )μS − λgI

J )Vp

.

(14)

The function DS(·) summarizes the expert marginal investment incentives as a function of in-
vestors’ beliefs and the expert’s own portfolio choice. Concavity of the value function (a property 
we show in Section 2.5) implies that the marginal value of reputation in a tail event is increas-
ing in reach-for-yield incentives y. Under certain conditions, this property implies that there is 
a solution to the fixed point problem in Proposition 3. However, in the interest of space, I will 
prove this formally once I impose consistency between experts policies and investors’ conjec-
tures about these policies in Section 2.3.

Proposition 3 is a useful place to discuss the role played by compensation incentives m. From 
Equation (14) we see that m shrinks reach-for-yield incentives toward zero. Qualitatively, this 
plays a role when the expert reputation is large and the expert value function sensitivity to rep-
utation approaches zero. In this case, an m = 0 implies that DS would be undefined in the limit 
P = 1, and very poorly behaved numerically for P close to 1. This is the reason I use m > 0
in the numerical analysis. A m > 0 induces the expert to maximize the fund Sharpe ratio when 
reputation concerns become weak.

Opportunist portfolio. In contrast with the skilled expert, the opportunist does not face a 
trade-off between expected returns and yield. Because his Sharpe ratio is zero, he can substitute 
performance between normal times and tail events without any impact on the fund’s expected 
returns.22 Solving the FOC in Equation (12) for the opportunist portfolio, I obtain that the op-
portunist portfolio is proportional to the Tail portfolio,

X∗ = XκE
E

[
g(p)Vp(p,O) − h

φ
Vp (p+,O)

]
λκ+/ζ, (15)

where the proportionality term is again the expert (net) reputation concerns. When reputation 
concerns are positive, he reaches for yield as much as he can.23 When the investment opportunity 
set is very rich, i.e., κ+ large, this constraint does not bind, as the opportunist reaches for yield 

22 In Section 3.5.3 I consider the case that tail-risk premium is not zero. I find that a positive risk premium further 
increases the reach-for-yield incentives of the expert.
23 In the next section, I demonstrate that reputation concerns are never negative in equilibrium.
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just enough to balance out normal times and tail event reputation incentives. In this case, the zero 
reputation concerns condition (DO(·) = 0) pins down his optimal portfolio. Proposition 4 below 
formalizes this discussion.

Proposition 4. Opportunist portfolio. Given investors’ beliefs yI and gI
J , the optimal portfolio 

policy of the opportunistic expert is given by

gJ =
⎧⎨⎩

−κ+ −X (yI )κ ĝJ +X (yI )κ < −κ+
ĝJ ĝJ +X (yI )κ ∈ [−κ+, κ+]

κ+ −X (yI )κ ĝJ +X (yI )κ > κ+,

(16)

where ĝJ solves DO(p, ĝJ |gI
J , yI ) = 0. The incentive function DO(·) is given by

DO(p,gJ |gI
J , yI ) =

(
X (yI )μS − λgI

J

)
Vp

− λ
gI

J

φ
Ez

[
Vp

(
p − gI

J

φ

(
gJ − gI

J

2
+ √

φz

)
,O

)]
. (17)

2.3. Equilibrium

In sections 2.1 and 2.2 we have studied separately the investor learning problem and the 
expert portfolio problem. I now characterize equilibrium by requiring that investors’ beliefs about 
experts’ portfolio policies coincide with the optimal policies of each expert.

After characterizing equilibrium in Proposition 5 below, I derive three properties of the equi-
librium. First, the skilled expert always reaches for yield (Corollary 5.1); second, reputation is 
increasing in performance (Corollary 5.2); and third, learning is slower when the fund is opaque 
(Corollary 5.3).

Proposition 5. Equilibrium portfolios. For any p ≥ 0, the portfolio policies {gJ (p), y(p)} :
R+ → [0, κ+] ×[0, 1] are consistent with equilibrium if they solve the following system of equa-
tions:

DS(p, y|gJ , y) = y, (18)

DO(p,gJ |gJ , y)
(
κ+ − (gJ +X (y)κ)

) = 0, (19)

DO(p,gJ |gJ , y) ≥ 0, (20)

gJ +X (y)κ ≤ κ+. (21)

The equilibrium restriction imposes the requirement that the incentives have to be self-
generating: investors’ beliefs about experts’ portfolio policies must in turn create incentives for 
these policies to be optimal for each expert type. Equation (18) imposes this restriction on the 
skilled expert and Equations (19)-(21) on the opportunistic type.24

Fig. 1 illustrates the two types of equilibrium consistent with Proposition 5. In Panel A, we 
have the equilibrium where Equation (21) is slack and Equation (20) holds with equality. In this 
case, the opportunistic expert is in an interior optimum where his portfolio choice just balances 

24 I need multiple conditions to characterize the opportunist portfolio, because his portfolio choice is sometimes at the 
corner of his investment opportunity set.
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Fig. 1. Equilibrium. Panels (a) and (b) show equilibrium determination according to Proposition 5. Panel (a) shows 
the case where Equation (21) is slack (the grey area) and the equilibrium is determined by the opportunistic expert 
indifference condition [Equation (20)]. Panel (b) illustrates the case where Equation (21) binds and Equation (21) is 
slack (the area at the left of the dashed line). In this case the opportunistic expert would like to take on more tail risk than 
his investment opportunity set permits.

out the competing reputation incentives. In Panel B, we have the equilibrium where Equation 
(21) holds with equality and Equation (20) is slack. In this case the opportunistic type is in a 
corner and reaches for yield aggressively. His investment opportunity set does not allow him to 
take more tail risk.

To gain more insight on the forces determining the equilibrium portfolio, I discuss the skilled 
expert equilibrium portfolio choice y, taking as given the opportunist equilibrium response gJ ; 
I then discuss the opportunistic expert equilibrium response gJ , while taking y as given.

Skilled experts. Let us look at the fixed-point Equation (18) for the case in which the weight 
m is zero:

y = 1 −
(
X (y)μS − λgJ

λgJ /φ

Vp(p,S)

E
[
Vp (p+, S)

])−1

. (22)

The ratio Vp(p,S)

E[Vp(p+,S)] is referred to as the expert short-term bias. If the short-term bias is 
above 1, the expert places a higher value on an increase in reputation in normal times than in a 
tail event. The higher this ratio, the more willing the expert is to sacrifice tail-event performance 
to improve normal-times performance, i.e., reach-for-yield incentives y are stronger. Multiply-
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ing this ratio we have X (y)μS−λgJ

λgJ /φ
, which I refer to as the informativeness ratio because it is the 

signal-to-noise ratio of normal-times performance relative to the signal-to-noise of tail-event per-
formance. A high informativeness ratio also increases y, as reputation incentives depend not only 
on how much the expert cares about her reputation, but also on how much performance impacts 
reputation in each state. Note that when gJ = 0, reach-for-yield incentives are at a maximum 
y = 1, and that initially y decreases with gJ , as tail-event performance becomes progressively 
more informative than normal-times performance. This reduces the incentives to reach for yield. 
However, note that an increase in gJ implies that in a tail event the reputation of the skilled expert 
is expected to increase by more, leading eventually to a reduction in concerns with reputation risk 
during a tail event.

Corollary 5.1 shows that, in equilibrium, the incentives y is strictly above zero, i.e., the skilled 
type always reaches for yield in equilibrium. The result below also shows that for a given oppor-
tunist policy gJ , the skilled policy is unique.

Corollary 5.1. The skilled expert always reaches for yield. Let gJ = cte ≥ 0, Vp(p, S) > 0, 
Vpp(p, S) < 0, and φ high enough. Furthermore, let μ+

S > λκ+(1 + 1
φ
) then for each p, then it 

exists a unique y(p|gJ ) ∈ (0, 1] that satisfies Equation (18).

Opportunistic expert. Equation (19) imposes one of two restrictions on the opportunist policy 
gJ : either he must be in a corner and choose tail exposure equal to κ+, or his policy gJ is such 
that reputation incentives balance out,

(X (y)μS − λgJ )Vp = gJ λ/φE
[
Vp (p+,O)

]
. (23)

If the expert cares equally about reputation in both states, he chooses a tail exposure that 
equates the informativeness of performance across them, which is also the choice that minimizes 
the rate of learning. However, if he has a strong short-term bias, he will choose to lose more 
reputation in a tail event so he loses less in normal times. This interior solution is not feasible 
when the expert’s short-term bias is sufficiently strong, as this balance of reputation incentives 
might require a tail exposure higher than κ+. This behavior also implies that reputation is always 
increasing in performance.

Corollary 5.2. Reputation is increasing in performance. Let V (p, O) be increasing and con-
cave; we have that g(p) =X (y) − λgJ (p) ≥ 0 and gJ (p) ≥ 0.

The proof is intuitive. If gJ were negative, it would imply that reputation is increasing in 
performance during normal times and decreasing in performance during tail events. This would 
allow the opportunist to increase reputation growth state-by-state by increasing his portfolio tail 
exposure. Conversely, gJ cannot be so large that reputation decreases in normal-times perfor-
mance, because now the opportunist would increase reputation growth by reducing the portfolio 
tail exposure. Therefore such a large gJ cannot be an equilibrium, either. The proof highlights 
the importance of the opportunistic expert strategic behavior in ruling out equilibria where the 
relationship between performance and reputation is inverted.

Together with Corollary 5.1 and Equation (8), this result implies that learning is always slower 
when the fund portfolio is opaque versus when the fund is transparent. Intuitively, the ability to 
take on tail risk in a hidden fashion allows the opportunistic type to manipulate performance to 
delay learning.
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Corollary 5.3. Learning is slower when portfolios are opaque. If μ+
S > λκ+ and φ > 1/λ, then 

E[dpS
t − dpO

t ] ≤ (μ+
S )2.

In Lemma 2 below, I show that if tail-event returns are sufficiently volatile, there always exists 
a corner equilibrium, as depicted in Fig. 1(b).

Lemma 2. Equilibrium existence. Let the conditions of Corollary 5.1 hold; then for any p ≥ 0, 
there exists at least one pair {gJ , y} consistent with equilibrium.

Note that learning will be even slower in an equilibrium where gJ is interior, because in this 
case the opportunist is minimizing the speed of learning.25

Strategic complementaries and multiplicity. The fixed point problem in Proposition 5 features 
strategic complementaries between investors’ beliefs and experts’ portfolio decisions. To show 
this clearly, I consider the extreme case where there is no learning during tail events (φ → ∞) 
and the weight m is zero. The opportunist wants to match the normal-times performance of the 
skilled type because there is no cost associated with performing poorly during tail events, i.e., 
he wants to choose gj = λ−1X(p, S)μS . Let’s first conjecture that the skilled expert does not 
reach for yield y = 0. If κ+ ≥ λ−1μ+

S , then the opportunist target choice is feasible for y = 0. 
Performance differences across types during normal times disappear. Performance ceases to have 
information, the skilled type has no reputation incentives, and our initial conjecture that she does 
not reach for yield (y = 0) is correct in equilibrium. Now let’s conjecture that she reaches for 
yield aggressively (y = 1); then because X (y = 1)(μS + λκ) > λκ+, the opportunistic type can 
no longer match her performance. This results in normal-times performance being informative 
and consequently y = 1 is an optimal choice for the skilled expert. So both {y = 0, gJ = μ+

S /λ}
and {y = 1, gJ = κ+ − X (y = 1)} are an equilibrium of this economy. This example illustrates 
how equilibrium multiplicity emerges from the two-way interaction between investors and ex-
perts.

Equilibrium selection. I have shown that the model delivers a trade-off between the speed of 
learning and the efficiency that capital is allocated. The existence of multiple equilibria implies 
that some equilibrium will feature faster learning and have a less efficient allocation of capital, 
i.e., a higher y, and other equilibria will feature slower learning but a more efficient allocation of 
capital, i.e., a lower y. The purpose of this paper is to highlight the link between reach-for-yield 
behavior and slow-moving capital, so I choose to focus on the equilibrium that features faster
learning and faster capital flows (higher y). The formal equilibrium selection criteria are stated 
in Appendix A.

2.4. Capital flows

I now build on the equilibrium portfolio choice and learning dynamics we have studied so far 
to characterize the dynamics of capital flows.

Investors allocate capital to a given expert’s as long as the expert reputation is high enough—
i.e., their investment policy is of the threshold type. How much they invest depends on how 
quickly the expert profitability decreases with scale. This effect is captured by the cost function 

25 Formally, in the interior case Equation (23) shows that the opportunistic expert minimizes the speed of learning 
adjusted for reputation concerns. Only when the expert places the same value on increases in reputation during normal 
times and tail events, he minimizes the speed of learning.
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c(·). First, note that the threshold-type policy generates fund liquidations in equilibrium. This 
feature of the environment is quite general and emerges naturally if investing with the oppor-
tunistic type is costly.26

For the intensive margin of the capital allocation decision, all that is required to connect the 
speed of learning and the speed of capital flows is that investors allocate more capital when they 
expect higher returns. We capture this property by assuming the expert faces quadratic trading 
costs that are increasing in the total volatility of the expert portfolio, i.e., atσr,t . We provide a 
micro-foundation for this cost function in Appendix B, based on the assumption that experts 
trade against mean-variance traders in these asset markets. An alternative micro-foundation is 
that fund investors themselves have mean-variance preferences with respect to their investments 
in the fund.27 As in Berk and Green (2004), the capital allocated to an expert is pinned down by 
investors’ zero profit condition, which states that the fund returns net of costs should be equal to 
the charged fees,

Ptσr,tX(Pt , θ)μS − σr,t c(atσr,t ) = ft . (24)

The equilibrium determination of the capital allocated to an expert works through the cost 
function. As investors allocate more dollars to the expert, costs increase and profitability de-
creases. Investors allocate more dollars to the expert until the condition (24) holds and net-of-cost 
returns equate to the paid fees. The “decreasing returns to scale” hypothesis implied in the in-
creasing shape of the cost function c is rooted in the idea that the expert skill is scarce. Intuitively, 
as more capital is deployed to chase an asset pricing anomaly, the returns erode as the anomaly 
disappears. Implicit in the assumption that returns are decreasing at the fund level is that the ex-
pert has an strategy that is truly unique to her. In the micro-foundation provided in Appendix B
this uniqueness is related to the set of markets that she has access to. For a broader discussion of 
the empirical evidence for this “decreasing returns to scale” hypothesis see Pástor et al. (2015)
and Berk and Van Binsbergen (2015). Equation (24) pins down the expert assets and the rep-
utation threshold at which investors liquidate the expert. I summarize the liquidation policy in 
Proposition 6 below.

Proposition 6. Expert liquidation. There is a reputation cutoff P such that the fund is liquidated 
permanently the first time Pt < P . Let the fee charged by the expert at liquidation be zero, then

P = c(0)

X(y = 0, S)μS

. (25)

Assuming that the optimal fee at liquidation is zero (which we prove below), the costs c(0)

are exactly compensated by the expected return of the expert at the liquidation threshold. The 
expert is liquidated for any reputation below this threshold because fees cannot be negative and 
perceived expected returns are decreasing in reputation.

26 In environments with perfect competition (as in this paper) this happens the first time the expected return of the expert 
(net of the minimum fee) becomes negative. In an environment with less competition among investors, they capture some 
of the upside of investing with the expert and would optimally delay liquidation, but the optimal policy would still involve 
eventual liquidation. Standard forms of risk-aversion would also lead to this threshold property because investors with 
experts close to liquidation would have only a small allocation with the expert (since perceived expected returns must be 
low close to liquidation), and would therefore behave as risk-neutral investors with respect to the liquidation decision.
27 I choose the first interpretation because what is scarce here is the expert skill, and not risk-bearing capital, as the 
risk-aversion interpretation would imply.
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We now turn to the intensive margin of the capital allocation decision. Given a quoted fee, in-
vestors decide how much capital they will allocate to the expert. Experts internalize this behavior 
in their fee decision. I start by substituting the investor investment policy [Equation (24)] into the 
Bellman equation [Equation (10)]. I then take the first-order condition with respect to the fund 
asset volatility σa,t = atσr,t , and obtain

PtX(pt , S)μS = c′(σa,t ). (26)

At the optimum, the increase in dollar returns due to an extra dollar invested (LHS) must be 
equal to the increase in costs (RHS). Only the fund asset volatility is determined here, because 
there are no borrowing frictions. In a world with leverage constraints, experts would favor small 
fees to attract more capital and avoid taking leverage.

Proposition 7. Equilibrium supply of capital. Let σa(pt , yt ) = atσr,t be the fund capital, 
fa(pt , yt ) = atft the expert compensation, and P(p) = Pep

1−P+Pep be the function that maps 
p into the probability that the expert is skilled. It follows that given reputation pt , incen-
tives yt , and cost function c(x) = ψ0x + ψ1

2 x2, experts’ and investors’ optimality implies 

σa(pt , yt ) = P(pt )X (yt )μS−ψ0
ψ1

and fa(pt , πt ) = ψ1
2 σa(pt , yt )

2.

From slow learning to slow-moving capital. I have shown that there is a trade-off between 
the speed of learning and the optimal allocation of capital (Corollary 1.1). I now show how the 
reduction in the speed of learning slows down the flow of capital (Corollary 8.1), and characterize 
the conditions under which the skilled expert capital allocation decision faces a trade-off between 
static and dynamic efficiency in the allocation of capital (Corollary 8.2). Here I focus on the rate 
at which capital flows to the skilled expert. In Section 3.4 I consider asset level flows as well.

In the Proposition 8 below, I fix the skilled expert reach-for-yield incentives y, and focus on an 
approximation that allows for an analytical characterization of the link between reach-for-yield 
behavior and the speed of capital flows. In Section 3.3, I show numerically that this connection 
holds up once we take into account the response of reaching-for-yield incentives to the change 
in reputation.

Proposition 8. Capital flows with opaque and transparent funds. The speed that capital flows 
when the fund is transparent:

E
[
d(σS

a (p, y) − σO
a (p, y))|y = gJ = 0

]
=P′(p)

μ+
S

ψ1
(μ+

S )2. (27)

When the fund is opaque we have

E
[
d

(
σS

a (p, y) − σO
a (p, y)

)
|y

]
≈P′(p)

X (y)μS

ψ1

(
(X (y)μS − gJ (y)λ)2 + λ

gJ (y)2

φ

)
. (28)

The expressions (27) and (28) are intuitive. The term outside the brackets is the sensitivity of 
fund capital to reputation. The term inside the brackets is the speed of learning. When y = 1, the 
sensitivity of fund capital to reputation is the same across the two information environments, but 
the speed of learning will be different as long as gJ > 0, which is always the case in equilibrium.
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Corollary 8.1. Capital flows more slowly when the fund is opaque. If φ is sufficiently high, fund 
opaqueness reduces the speed of capital flows.

Corollary 8.1 shows that the reach-for-yield by the opportunistic type reduces the speed of 
capital flows when the fund is opaque. I show below that reach-for-yield behavior by the skilled 
expert increases the speed at which capital flows, but does so at the cost of lower expected returns. 
By distorting her portfolio toward high-yield assets, the skilled expert increases her normal-times 
performance and the speed of capital flows. These results are central to this paper. A trade-off 
between present and future capital allocation emerges as the skilled expert has to choose between 
the optimal allocation of capital in a given time, which is consistent with y = 0, and the future 
allocation, which improves faster when she reaches for yield y > 0.28

Corollary 8.2. Capital flows faster when the skilled expert reaches for yield. If μ+
S > (λ + 1

φ
)κ+

and gJ (y) = κ+ − X (y)κ , i.e., the opportunist is in a corner, then the speed of capital flows 
increases in y at y = 0.

2.5. Analytical solution

In this section I focus on a case where the experts’ value functions can be solved analytically. 
This enables some properties of the solution to be proven formally.29 The solution is presented 
in Proposition 9 and it is discussed below:

Proposition 9. Equilibrium valuations: an analytical solution. Let m = 0, φ → ∞, and atft =
f ; then

V (p, θ) = f

ρ
(1 − exp (−ιθ × p)) , (29)

where ιS =
√

1+ 8ρ

g2 +1

2 , ιO =
√

1+ 8ρ

g2 −1

2 , and g =
√

(μ+
S )2 + (λκ+)2 − λκ+.

The key for obtaining an analytical solution is that lack of learning during tail events (φ → ∞) 
implies y = 1 and XOκ = κ+, and transforms the integro-differential equation in (10) into an 
ordinary differential equation (ODE). Finally, the assumption of constant scale and constant fee 
makes this ODE have constant coefficients.

In Equation (29) we see that the expert’s valuation increases at a decreasing rate, with the 
valuation reaching the value of the discounted fees when the probability of liquidation is zero 
(p → ∞). In this case, valuation changes only because the probability of fund liquidation 
changes with reputation. The coefficient ιθ summarizes how fast the liquidation risk decays with 
the experts’ reputation. The key determinant of the slope coefficient is the speed of learning. 
Because returns are uninformative during tail events, the speed of learning is given by g, the 
difference in normal-times performance between experts. We see that ιS > ιO , so liquidation risk 
decays faster for the skilled type. Intuitively, because the opportunist’s reputation drifts toward 

28 Capital allocation improves faster when y > 0, because the skilled expert allocates capital better than the opportunistic 
expert.
29 I verify numerically in the Section 3 that these properties hold more generally.
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zero, an increase in reputation only produces a temporary delay in liquidation. This dynamic con-
trasts with the skilled type, for whom an increase in reputation leads to a permanent reduction in 
the probability of liquidation because her reputation trends upward. Thus, the heterogeneity in 
reputation concerns is a result of the endogenous learning dynamics.

Proposition 9 above gives us three properties of the experts’ value function that are key to the 
results in Section 2.3. Specifically, we learn that value functions are increasing in reputation and 
concave, and that the skilled expert’s value function is more concave. In the next section, I show 
that these properties hold more generally.

3. Analysis

In this section, a numerical example is used to expand on the model’s implications. I solve for 
V (p, θ) numerically using finite-difference methods (Appendix C provides details). The baseline 
parameter values are given below. I choose a parameter combination to illustrate the model’s 
predictions.30

Numerical example: μ+
S = 1, μS ∝ 1n, κ+ = 2, μ�

S �κ = 0, n = 9, λ = 0.25, 
√

φ = 3, ρ = 0.05, 
ψ0 = 0.5, ψ1 = 0.5, m = 0.2.

3.1. Expert valuation dynamics and incentives to reach for yield

The equilibrium reach-for-yield incentives are the result of dynamic incentives reflected on 
experts’ valuations. Figs. 2(a) and 2(b) show how valuations change with the experts’ reputation. 
Valuations increase with reputation as the probability of liquidation decreases. Valuations are 
higher for the skilled type because her performance is better and her reputation drifts upwards 
(Corollary 5.2).

In the log-likelihood space, valuations are concave [Fig. 2(a)]. Concavity implies that incen-
tives to reach for yield get stronger as reputation goes down [see Equation (14)]. Intuitively, as 
the reputation goes down, the probability of hitting the liquidation threshold becomes more sen-
sitive to changes in reputation. Because liquidation is costly, the skilled expert becomes more 
risk-averse as she approaches liquidation.

Fig. 2(b) shows valuations in space of probabilities. The vertical line denotes the threshold 
where the opaque fund is liquidated. Investors pull out earlier than they pull out from a transpar-
ent fund, because they rationally expect the expert to reach for yield and to have lower expected 
returns. Because experts expect investors to pull out earlier, the investors’ behavior feeds back 
into even stronger incentives to reach for yield.

Fig. 2(c) shows reaching-for-yield incentives y(p). Reaching for yield goes down as reputa-
tion increases, especially for the skilled expert, who becomes less averse to reputation shocks 
as liquidation becomes less likely. This leads her to gradually shift from reaching for yield to 
“reaching for expected returns” as y(p) goes to zero. Fig. 2(f) shows this directly by plotting the 
portfolio weight on the Tail portfolio wκ(p, θ) = y(p)λκ+√

(μ+
S )2+(y(p)λκ+)2

as a function of reputation. 

As reputation grows, the skilled expert reduces her position on the Tail portfolio and increases her 
position on the Sharpe portfolio. This contrasts with the transparent benchmark, where the expert 

30 See Appendix E for a discussion of these parameter choices.
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Fig. 2. Valuation, incentives, and portfolio choice. The top row shows valuations as a function of reputation. Panel 
(a) show valuations as function of reputation in log-likelihood space (p), and Panel (b) in probability space (P(p)). 
The bottom row shows the policy functions. Panel (c) shows reach-for-yield incentives y(p) as a function of reputa-
tion in probability space (P(p)) and Panel (d) shows the resulting portfolio weight on the Tail portfolio wκ (p, θ) =

y(p)λκ+√
(μ+

S
)2+(y(p)λκ+)2

. Black (red in the web version) lines denote the skilled expert and grey lines the opportunistic ex-

pert. The vertical bar denotes the threshold at which the opaque fund is liquidated. The transparent fund is liquidated in 
the left limit of the plots. Continuous lines denote the opaque fund and dashed lines the transparent fund.

always holds the Sharpe portfolio. The opportunistic expert, on the other hand, always invests on 
the Tail portfolio as a result of the strong incentives to reach for yield shown in Fig. 2(c).

Overall, the model predicts that the opportunist always reaches for yield more aggressively 
than the skilled expert, and the skilled expert’s reaching-for-yield incentives peak as the fund 
approaches liquidation.

3.2. Capital allocation and expert performance

I decompose the fund returns in terms of the fund total volatility, which measures how much 
capital investors allocate to the expert, and the fund Sharpe Ratio, which is a measure of the qual-
ity of the expert capital allocation. Here I discuss the expert capital allocation decision. Fig. 3(a) 
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shows that the skilled expert’s yield increases as her reputation goes down. Heightened concerns 
with liquidation risk when reputation is low push the expert toward assets with high tail expo-
sure because they over perform during normal times. Even though expected returns are constant 
across assets, reaching for yield reduces the diversification of the expert portfolio. The portfolio’s 
Sharpe ratio falls as a result of this under diversification [Fig. 3(c)]. The opportunistic expert in 
this example is always constrained and will max out his tail exposure.31 In the transparent bench-
mark, neither expert reaches for yield, and both simply hold the Sharpe portfolio.

Fig. 3(c) shows that the tail-event performance of the skilled expert improves with reputation, 
while the opportunist always performs equally poorly. Because reputation is a weighted average 
of past performance, this dynamic implies that bad performance is associated with higher yield 
and forecasts higher tail risk.

The dynamics of expected returns and liquidation have similarities to the mechanism pro-
posed in Shleifer and Vishny (1997), where the risk of investors pulling out induces the manager 
to choose low-expected-return strategies. In their setting, trading strategies that are more volatile 
led to higher liquidation risk because investors were assumed not to adjust their behavior ap-
propriately. A difference between their mechanism and mine is that here investor behavior is 
optimal. This difference is important because it allows me to study capital immobility.

3.3. Capital flows

For a given reputation, the total amount of capital allocated to a fund is a function of the 
fund’s expected return; from Proposition 7, σa(Pt ) = PtX(Pt ,S)μS−ψ1

2ψ0
. Fig. 4(a) shows that the 

opaque fund always attracts less capital and it is liquidated for a higher level of reputation. As 
reputation increases, and reach-for-yield incentives decreases, the capital allocated to an opaque 
fund converges to the transparent fund allocation.

The key determinant of the speed of capital flows is the rate at which investors learn. 
Figs. 3(c-e) depict the endogenous learning coefficients g(p) and gJ (p), and the rate of learning. 
The normal-times performance coefficient g decreases as reputation rises, while the tail-event 
coefficient increases. Intuitively, as the skilled expert reaches for yield less aggressively, the dif-
ference in normal-times performance across types shrinks. The reach for yield by the skilled type 
distorts allocations and decreases expected returns, but it increases the speed of learning. Thus, 
given the opportunistic type’s behavior, there is a trade-off even from the vantage point of society 
as a whole. Transitory distortions in the allocation of capital lead to a faster convergence to the 
efficient allocation of capital. Portfolio opaqueness introduces a trade-off between the static and 
intertemporal efficiencies in the allocation of capital. Learning is faster when the skilled type 
reaches for yield aggressively, but gradually falls as her portfolio converges to the Sharpe portfo-
lio. However, even when the learning rate is at its maximum, it is substantially lower than in the 
transparent benchmark.

Fig. 4(b) shows capital flows as a function of the capital gap, σa(1) − σa(P ), which is the 
difference between the long-run and the current level of capital. The slope of this plot measures 
the rate of convergence. A slope of 0.25 for the transparent fund case implies that the capital 
gap shrinks by 25% every year. Capital converges instead at 13% when the fund is opaque. 
Convergence rates are 50% slower than for the transparent fund.

31 Recall that the opportunistic expert’s expected returns are zero by assumption (μO = 0).



930 A. Moreira / Journal of Economic Theory 183 (2019) 907–951
Fig. 3. Performance and learning. Panels (a), (b), and (c) show equilibrium performance during normal times, tail 
events, and fund expected returns. Panels (d) and (e) show the informativeness of performance during normal times and 
tail events. Panel (f) shows the expected growth of the skilled intermediary reputation. Black (red in the web version) 
lines denote the skilled expert and grey lines the opportunistic expert. The vertical bar denotes the threshold at which the 
opaque fund is liquidated. The transparent fund is liquidated in the left limit of the plots. Continuous lines denote the 
opaque fund and dashed lines the transparent fund.
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Capital flows more slowly into the opaque fund because the opportunistic expert aggressively 
reaches for yield. This behavior reduces the information content of performance and slows down 
learning. The skilled expert strategic response only partially attenuates this reduction in the speed 
of capital, because reaching for yield is more costly for an expert with good investment opportu-
nities.

3.4. The cross-sectional of capital flows

Here, I study how capital flows differently across technologies. The amount of capi-
tal in a technology—X(P, S)σa(P )—depends on how much capital a skilled expert has to 
invest—σa(P )—and how the skilled expert allocates this capital—X(P, S).32

Fig. 4(c) shows that capital allocation to high-tail-risk technologies converges quickly to its 
long-run value and it even over shoots its long-run level. For technologies that appreciate in a tail 
event, we have exactly the opposite. Initially, these technologies experience capital outflows as 
investors allocate more capital to the fund. Experts short these technologies despite the fact that 
they would increase their expected returns. Experts with low reputation perceive the investment 
in these technologies as unattractive because they have low yields. They are unattractive when 
the expert has a short investment horizon due to the high liquidation risk.

Fig. 4(d) illustrates the speed of capital flows. We can see the capital flow as a function of 
the capital gap in a given technology. We see sharp differences across technologies when the 
fund is opaque. While capital flows into a high-tail-risk technology extremely quickly, capital 
initially flows out of the low-tail-risk technologies. In Figs. 4(c-d) we see that, when the fund is 
transparent, capital flows at the same rate to all technologies. Capital is equally scarce in each of 
them, so the expert allocates investments equally across them as more capital flows into the fund.

From an empiricist vantage point, the pattern in Fig. 4(d) is suggestive of market segmentation 
or investors’ neglect of tail risk, but they are an equilibrium outcome in an environment where 
markets are integrated and investors are fully aware of the risks. Capital flows into perfectly 
integrated markets at very different rates. This pattern is driven by the endogenous investment 
incentives that arise from the way investors optimally allocate capital. Importantly, these distor-
tions arise even though investors fully understand the environment and the risks they are exposed 
to. The lack of measurement leads to reaching-for-yield behavior and heterogeneity in the speed 
of capital flows.

3.5. Empirical implications

3.5.1. Flow sensitivity and reach-for-yield behavior
A key prediction of the model is that fund managers reach for yield more aggressively when 

investor flows are more sensitive to fund returns. Furthermore, the model also predicts that this 
relationship intensifies following outflows. Studying money market funds during the 2007-2009 
financial crisis, Kacperczyk and Schnabl (2012) showed evidence consistent with these predic-
tions. They showed that funds with flows that were more sensitive to performance were the ones 
that invested more in assets that paid out poorly as financial markets deteriorated in the fall of 
2008, i.e., they took on more tail risk. They also showed that funds that suffered more severe 

32 I focus on the skilled expert allocation since all the technologies in the opportunist portfolio earn zero expected 
returns, and therefore, do not lead to any (direct) capital misallocation.
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Fig. 4. Capital immobility. Panel (a) shows the total capital managed by the expert σa(Pt ) as a function of reputation. 
Panel (b) shows the expected aggregate inflow of capital for a skilled expert as a function of the capital gap (σa (P =
1) −σa(Pt )). Panel (c) shows the capital invested in three different technologies: with high tail risk (high κ), average tail 
risk, and low tail risk (low κ) as a function of reputation. Panel (d) shows the rate of capital inflow in these technologies 
as a function of the technology capital gap (X(P = 1, S)σa(P = 1) − X(Pt , S)σa(P − t)). The vertical bar denotes 
the threshold at which the opaque fund is liquidated. The transparent fund is liquidated in the left limit of the plots. 
Continuous lines denote the opaque fund and dashed lines the transparent fund.

outflows were also the funds that had more sensitive flows and that reached for yield more ag-
gressively.

The academic literature and policy makers have interpreted this evidence as a result of the 
lack of market discipline: this pattern was driven either by investors’ neglect of the link between 
higher fund yields and tail risk or because investors had confidence in a government bailout of 
these funds. In the model, it is exactly the market discipline that drives rampant reaching-for-
yield behavior. Investors’ response to fund manager incentives amplifies the incentives to reach 
for yield of investors and managers.

3.5.2. Capital is less mobile in funds with more flexible mandates
Greater investment mandate flexibility allows the expert to consider a wider set of assets for 

investment. An expansion in the investment opportunity set has two effects: higher alpha for the 
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Fig. 5. Empirical implications. Panels (a) to (c) show the expected aggregate inflow of capital for a skilled expert as 
function of the capital gap for alternative parameters. Panel (a) varies κ+, which denotes the maximum tail exposure 
feasible in the opportunity set. This shows how more flexible investment mandates reduce the speed of capital flows if 
they increase reach-for-yield opportunities. Panel(b) varies the tail-event intensity λ. This shows how an increase in the 
probability of a tail event can make capital flow more slowly because it increases reach-for-yield opportunities. Panel 
(c) varies the cross-sectional relationship between tail risk and expected returns—i.e., if tail-risk premium is positive or 
negative. This shows that capital will be particular slowmoving when tail risk is underpriced (negative tail-risk premium). 
Finally, panel (d) shows the portfolio weight of the skilled intermediary on the tail-risk portfolio wk(P, S) for different 
levels of the risk-free interest rate. This shows that reach-for-yield is stronger when monetary policy is looser.

skilled expert, but also greater opportunities to reach for yield for both types. Thus, the optimal 
mandate should be determined by balancing out these forces. Here I focus on the second effect, 
showing that an increase in the reach-for-yield opportunities, i.e., a higher κ+, leads to more 
capital immobility.

Fig. 5(a) shows that the higher the κ+, the more slowly capital flows. This result follows 
directly from the fact that the opportunistic type reaches for yield more aggressively than the 
skilled type. An increase in the performance that can be manufactured through tail risk reduces 
the (normal-times) performance difference across types, resulting in less learning and slower 
capital flows. A higher κ+ also leads to more performance persistence and a more concave rela-
tion between flow and performance. Performance persistence is a by-product of slower learning 
and slower capital flows. The increasing sensitivity of flows after bad performance is the result 
of the stronger time variation in reach-for-yield behavior by the skilled type when κ+ is higher.
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An important source of variation in mandate flexibility is the asset class of a fund. The cor-
porate bond market is an example of an asset class that exhibits low volatility, but substantial 
negative skewness (Bessembinder et al., 2009; Stein, 2013). This implies that capital should 
move particularly slowly into bond funds. It also suggests that, in contrast to equity mutual funds, 
bond funds should have performance that is more persistent, and the flow-performance relation-
ship should be stronger after bad returns. There is recent evidence along these lines. Specifically, 
Goldstein et al. (2015) found that corporate bond fund flows were more sensitive to negative per-
formance, in contrast to equity mutual funds, which tend to have a convex relationship between 
flows and performance.

3.5.3. Capital is less mobile when tail risk is underpriced
In the model, the trade-off between normal-times performance and expected returns emerges 

from the fact that the Tail portfolio and the Sharpe portfolio are different. This difference implies 
that the maximization of normal-times performance—that is, the reach for yield—reduces ex-
pected returns. The magnitude of the wedge between these portfolios depends critically on how 
expected returns are related to tail risk.

Thus far, I have assumed no relationship (a zero tail-risk premium). Fig. 5(c) shows the speed 
of capital flows as I vary the tail-risk premium. Capital moves more slowly when the tail-risk 
premium is negative. When tail risk is underpriced, there is a larger wedge between the portfolio 
that maximizes expected returns and the one that maximizes normal-times performance, because 
the Sharpe portfolio now involves shorting high-tail-risk technologies. This further attenuates 
the normal-times performance advantage of the skilled expert when they invest in the Sharpe 
portfolio. The end result is that normal-times performance is less informative and capital moves 
more slowly.

3.5.4. Capital is less mobile when a tail event is more likely
When tail risk is correctly priced, an increase in the probability of a tail event increases the 

normal-times performance that can be created by taking on tail risk. Fig. 5(b) shows the speed of 
capital flows for three values of λ, the tail-event intensity. The higher the tail intensity, the more 
slowly capital flows. Here why this happens: an increase in tail intensity increases the amount of 
performance that can be manufactured by reaching for yield; the difference in yields across types 
falls; performance becomes less informative; and the end result is slow-moving capital. I am not 
aware of any evidence that directly speaks to this prediction.

3.5.5. Reach for yield is stronger when interest rates are low
As noted by Rajan (2005, 2012), Stein (2013), and many others, sustained low interest rates 

are associated with strong reach-for-yield behavior in asset markets. Choi and Kronlund (2014)
have documented evidence consistent with this view. In the model, the relation between reach-
for-yield behavior and the level of interest rates emerges because incentives to reach for yield 
are tightly linked to the present value of future fees. Specifically, a lower interest rate increases 
the value of future fees, and consequently reduces the relative importance of performance incen-
tives. This can be seen in Equation (14): a reduction in interest rates increases Vp but leaves m
unchanged. As a result, reach for yield increases. To illustrate this relationship, Fig. 5(d) shows 
the skilled expert’s portfolio weight on the Tail portfolio for three different levels of the risk-free 
rate. Consistent with the views discussed above, a lower interest rate leads to a higher portfolio 
weight on the Tail portfolio, i.e., stronger reach for yield.
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3.5.6. Tail risk is underpriced in high-tail-risk assets
While the model in the main body of the text has no explicit implications for pricing, a sim-

ple extension where the expert trades against mean-variance investors, transforms the capital 
allocation predictions into asset pricing predictions (see Appendix B) . Intuitively, the very low 
allocation to the low-tail-risk assets translates into high expected returns, while the very high 
allocation to high-tail-risk assets translates into low expected returns.

Coval et al. (2009) documented evidence consistent with this prediction. Specifically, they 
showed that senior CDO tranches were persistently overpriced and junior CDO tranches persis-
tently underpriced relative to option markets. Under the reasonable assumption that it is easier 
for investors to measure tail risks in an option portfolio than in a structured product portfolio, the 
model is consistent with both the underpricing of the junior tranches and overpricing of the senior 
tranches. Intermediaries dislike the junior tranche because it is very risky during normal times 
and has a low tail-risk-to-volatility ratio, while the senior tranche is close to safe during normal 
times and much more exposed to tail risk per unit of normal-times volatility, and therefore more 
appealing for a manager concerned with his or her short-term performance.

4. Conclusion

In this paper, I have developed a fully consistent narrative of how intermediaries and investors 
interact. I have shown how this interaction leads to time variation in reaching-for-yield incentives 
and has repercussions for the speed at which capital flows. Capital flows slowly to profitable 
opportunities. The reduction in capital flows is particularly severe for strategies that are good 
hedges against tail risks. The endogenous learning dynamic produces a feedback loop between 
liquidation risk and reach-for-yield behavior. In contrast with previous literature, the model re-
sults are driven by investors’ sophisticated understanding of the environment. Information and 
capital flows shape and are shaped by the incentives intermediaries face.

The importance of reach-for-yield opportunities in slowing the flow of capital is the funda-
mental new insight of this framework. It points to a novel trade-off between the present and 
future allocation of capital in intermediated markets. Further, it complements the slow-moving 
capital literature by developing a mechanism that can account for a substantially more persistent 
misallocation of capital.

Appendix

This appendix contains: proofs and derivations used in the paper, a microfoundation for the 
cost function c(·), additional discussion of the importance of the model assumptions, discussion 
of the parameter choice, and the numerical method I used to solve the model.

Appendix A. Proofs

Proposition 1. Investor learning about expert type.

Proof. Consider the cumulative realized excess return history r� in an interval �, and let Pt the 
perceived probability the intermediary is of type θ = S in the beginning of the interval. Bayes 
law implies,

Pt+� = f (r�|θ = S,Pt )Pt
, (A.1)
f (r�|θ = S,Pt )Pt + f (r�|θ = O,Pt )(1 − Pt )
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where f (r|θ, P0) is the probability distribution of a return history r if the intermediary is of type 
θ and initial reputation P0. In our setting, this density is a complex object since the distribution of 
realized returns is time-varying due to the time-variation in the expert portfolio. However, in the 
dt limit, the problem simplifies because the portfolios become constant as the interval becomes 
arbitrary short. The problem is further simplified because in any interval dt , dJt equals to zero 
or one. The learning problem boils down to distinguish between two statistical models is two 
different observable states.

For this proof, I abstract form transaction costs just to economize on notation, but transaction 
costs have no impact on the learning dynamics since it impacts both experts equally.

First note that investors can detect whether dJt = 1 because the return quadratic variation 
perfectly reveals it. Let me start with normal times, dJt = 0. In this case, from the investor 
vantage point returns are distributed as,

rθ
dt ∼ N(XI (p, θ) (μθ + λκ)dt,1dt). (A.2)

Applying equation (A.1) I obtain

Pt+dt = N(rdt |XI (p,S) (μS + λκ)dt, dt) × Pt

N(rdt |XI (p,S) (μS + λκ)dt, dt) × Pt + N(rdt |XI (p,O) (μO + λκ)dt, dt) × (1 − Pt )
.

(A.3)

Now lets go to log-likelihood space, define pt+dt = ln 
(

Pt+dt

1−Pt+dt

)
, and substitute to get,

pt+dt = ln
(
N(rdt |XI (p,S)(μS + λκ)dt, dt) × Pt

)
− ln

(
N(rdt |XI (p,O) (μO + λκ)dt, dt) × (1 − Pt )

)
= pt + ln

(
exp

(
−

(
drt − XI (p,S) (μS + λκ)dt

)2

2dt

))

− ln

(
exp

(
−

(
drt − XI (p,O)(μO + λκ)dt

)2

2dt

))

= pt − drt − XI (p,S) (μS + λκ)dt

2dt2 + drt − XI (p,O) (μO + λκ)dt

2dt2

= pt +
(
XI (p,S)(μS + λκ) − XI (p,O)(μO + λκ)

)
×

(
drt − XI (p,S) (μS + λκ) + XI (p,O) (μO + λκ)

2
dt

)
. (A.4)

Now let me define the normal-times learning coefficients as,

e(pt ) = E[drθ
t−] = XI (p,S) (μS + λκ) + XI (p,O) (μO + λκ)

2
dt, (A.5)

g(p) = E[drS
t− − drO

t−] =
(
XI (p,S)(μS + λκ) − XI (p,O)(μO + λκ)

)
, (A.6)

to obtain the normal-times reputation dynamics

dpt− = g(p) (drt− − e(pt )) . (A.7)
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Now lets focus on periods with tail events, dJt = 1. In this case we have rθ
dt ∼ N(−XI (p, θ)κ, φ). 

Repeating exactly the same algebra as for the dJ = 0 case, and defining the tail-event learning 
coefficients as

eJ (pt ) = E[drθ
t |dJt = 1] = XI (p,S)κ + XI (p,O)κ

2
dt, (A.8)

gJ (p) = E[drS
t − drO

t |dJt = 1] = −
(
XI (p,S)κ − XI (p,O)κ

)
, (A.9)

I obtain

pt+dt = pt +
(−XI (p,S)κ + XI (p,O)κ

)
φ

(
rθ
dt + XI (p,S)κ + XI (p,O)κ

2

)
, (A.10)

dpt = gJ (p)

φ

(
rθ
dt − eJ (pt )

)
. (A.11)

This proves Proposition 1. �
Corollary 1.1. Reaching for yield and the speed of learning.

Proof. Point (1) is immediate from Equation (8). If both hold the Sharpe portfolio we have 
g(p) = μ+

S and gJ (p) = 0, then

E[dpt |θ = S,XS = Xμ] − E[dpt |θ = O,XO = Xμ]

= μ+
S

(
μ+

S − μ+
S

2

)
− μ+

S

(
0 − μ+

S

2

)
(A.12)

= (μ+
S )2

2
− (μ+

S )2

2
(A.13)

= (μ+
S )2 (A.14)

Point (2) also follows from Equation (8) by letting the skilled portfolio to be XS = Xμ and the 
opportunist portfolio be defined by a tail exposure gJ . The expected reputation growth of each 
type is given by

E[dpt |θ = S,XS = Xmu]

= (μ+
S − gJ λ) ×

(
μ+

S − μ+
S + gJ λ

2

)
+ gJ

φ
×

(
0 + gJ

2

)
λ (A.15)

E[dpt |θ = O,(XO − XS)κ = gJ ]

= (μ+
S − gJ λ) ×

(
0 − μ+

S + gJ λ

2

)
+ gJ

φ
×

(
−gJ + gJ

2

)
λ (A.16)

Differentiating with respect to the tail exposure of the opportunist expert and evaluating it at 
gJ = 0 we show the result.

∂E[dpt |θ = S,XS = Xμ] − E[dpt |θ = O,(XO − XS)κ = gJ ]
∂gJ

|gJ =0 = −2μ+
S λ ≤ 0

(A.17)
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Point (3) also follows from Equation (8). Let the skilled portfolio be written as a function of 
a scalar x as XS(x) = F(x)X∗ + xXκ , where F(x) = √

1 − x2 implies that the portfolio XS(x)

has variance equal to one for any x between 0 and 1. Let the opportunist portfolio be defined by 
a tail exposure κ+. The expected reputation growth across types is given by

E[dpS
t |XS = XS(x)] − E[dpO

t |XOκ = κ+]
= (XS(x)μS − (κ+ − XS(x)κ)λ)2 + (κ+ − XS(x)κ)2

φ
λ. (A.18)

Differentiating this reputation growth rate with respect to x, which is the tilt of the skilled type 
toward the Tail portfolio, I obtain

∂E[dpt |θ = S,XS = XS(x)] − E[dpt |θ = O,XOκ = κ+]
∂x

|x=0 = (A.19)

= 2(X (0)μS − (κ+ −X (0)κ)λ)X ′(0)(μS + λκ)2 − 2
(κ+ −X (0)κ)

φ
λX ′(0)κ

= 2(μ+
S − κ+λ)Xκ(μS + λκ) − 2

κ+

φ
λXκκ

= 2(μ+
S − κ+λ)λκ+ − 2

κ+

φ
λκ+

= 2λκ+(μ+
S − κ+λ − κ+ 1

φ
). (A.20)

This implies that the reputation growth grows if an only if μ+
S − κ+λ > κ+/φ. This condition 

is fairly intuitive. It simply says that the signal-to-noise ratio of normal-times performance should 
be higher than the signal-to-noise ratio of tail risk performance at x = 0 (when there is no reach 
for yield) for reputation growth to be increasing in the skilled expert reach-for-yield. �
Proposition 2. Learning speed when portfolios are transparent.

Proof. There are two results here. The first result is that both skilled and opportunistic types in-
vest in the Sharpe portfolio. That the skilled type invest in the Sharpe portfolio is immediate from 
her first order condition (Equation (11)). Given the skilled choice, the opportunistic must mimic 
her behavior because the portfolio is transparent and any tail risk taking would reveal the oppor-
tunistic type and lead to immediate liquidation. Given this first result, result 1 in Corollary 1.1
immediately imply the second result. �
Corollary 2.1. Analytical solution for the transparent benchmark. [This Corollary is not in the 
main text.]

Let’s assume that fees are constant atft = f , then experts’ value functions are given by

V (p, θ) = f

ρ
(1 − exp (−ιθ × p)) , (A.21)

where ιS =
√

1+ 8ρ

(μ
+
S

)2
+1

, ιO =
√

1+ 8ρ

(μ
+
S

)2
−1

.
2 2
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Proof. From Proposition 1, the optimal experts’ portfolios are X(p, S) = X(p, O) = X∗.
This implies that g(pt ) = μ+

S . Substituting the optimal choice in the Bellman Equation (10), 
I obtain

ρV (p,S) = atft + Vp(p,S)
g2

2
+ Vpp(p,S)

g2

2
. (A.22)

ρV (p,O) = atft − Vp(p,O)
g2

2
+ Vpp(p,O)

g2

2
(A.23)

Using that atft = f . Substituting in the ODE above I obtain the solution

V (p,S) = f

ρ
+ K1e

−
1−

√
1+ 8ρ

g2

2 p + K2e
−

1+
√

1+ 8ρ

g2

2 p (A.24)

V (p,O) = f

ρ
+ K3e

−
−1−

√
1+ 8ρ

g2

2 p + K4e
−

−1+
√

1+ 8ρ

g2

2 p. (A.25)

Imposing the boundary conditions V (0, θ) = 0 and that V (∞, θ) = f
ρ

I obtain the result. �
Lemma 1. Scalar representation of the skilled portfolio.

Proof. From the first order condition in Equation (12) we immediately have that the optimal 
skilled expert portfolio is a combination of μS�−1 and κ�−1. Together with the unit-variance 
constraint, it is immediate that we can represent the optimal portfolio as X∗x1 + Xκx2 where √

x2
1 + x2

2 = 1. The representation in this Lemma is a particular case of this representation. The 
scalar y can be interpreted as reach-for-yield incentives because if y = 0, the portfolio is the 
Sharpe portfolio, the portfolio with maximum expected returns, and if y = 1, the portfolios is 
the combination that maximizes the fund yield, i.e., normal-times performance. See the proof of 
Proposition 3 below for additional detail. �
Proposition 3. Skilled expert portfolio choice.

Proof. I start by deriving the first order condition in Equation (12), and then show how the opti-
mal choice can be characterized by the incentive schedule that satisfies the fixed point equation 
(14). Let me start by isolating the terms in the Bellman equation (Equation (10)) that depend 
directly on the expert’s choice,

sup
X∈	

Vpg(pt )X (μθ + λκ)

+ λEE
t

[
V

(
p + gJ (p) ×

(
−Xκ −EI

[
−XIκ|p

])
+ gJ (p)ε, θ

)
|dJt = 1

]
. (A.26)

I conjecture for now that the value function is positive, increasing and concave in reputation 
(V (p, θ) ≥ 0, Vp(p, θ) ≥ 0, Vpp < 0) and positive return surprises are always good news about 
expert type (g(p), gJ (p) ≥ 0). I will show later that four of these properties always hold in 
equilibrium. I show that concavity holds in specific cases and verify that holds numerically more 
generally.

It follows from these properties that the third term is decreasing in the portfolio tail-exposure 
Xκ , while the other terms are linear in the portfolio expected return and normal-times perfor-
mance. Note that
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κκ�gJ (p)2λEE
t

×
[
Vpp

(
p + gJ (p) ×

(
−Xκ −EI

[
−XIκ|p

])
+ gJ (p)ε, θ

)
|dJt = 1

]
< 0, (A.27)

so the first order condition is necessary and sufficient to characterize the optimal policy.
Differentiating with respect to X, I obtain Equation (12). Solving for X, I get

X = ζ−1 (μS × y1 + y2 × λ × κ)� �−1, (A.28)

where y1 and y2 are scalars given by

y1 = Vp(p, θ)g(p) (A.29)

y2 = Vp(p,S)g(p) − gJ (pt )E
E
ε

×
[
Vp

(
p + gJ (p) ×

(
−Xκ −EI

[
−XIκ|p

])
+ gJ (p)ε, S

)]
Substituting in the unit-variance constraint, X�X� = 1, we get,

ζ =
√

(μS × y1 + y2 × κ)� �−1 (μS × y1 + y2 × κ). (A.30)

Define y = y2/y1 and using that μ′
S�κ = 0, X∗ ∝ μS�−1, and Xκ ∝ κ�−1, we can write

X = X∗
μ+

S√
(μ+

S )2 + (yλκ+)2
+ yλκ+√

(μ+
S )2 + (yλκ+)2

Xκ. (A.31)

Now note that y depends on the choice X(p, S). So the above equation characterizes X only 
implicitly. Because X is of the same dimension as the number of assets, this fixed point problem 
in Equation (A.31) is a hard one to solve. I will now characterize the solution in terms of scalar 
incentives y. Define X (y) as the function that maps an incentive y into a portfolio choice X,

X (y) = X∗
μ+

S√
(μ+

S )2 + (yλκ+)2
+ yλκ+√

(μ+
S )2 + (yλκ+)2

Xκ. (A.32)

Now equilibrium is much simpler. It must be the case that a given incentive y imply a choice 
X (y), which itself is consistent with incentive y. Formally for any p, y must solve

y = Vp(p,S)g(p) − gJ (pt )/φE
E
ε

[
Vp

(
p + gJ (p)/φ

(−X (y)κ −EI
[−XI κ|p]) + gJ (p)/

√
φε,S

)]
Vp(p,S)g(p)

,

(A.33)

Instead of solving for the equilibrium portfolio that is consistent with equilibrium, we solve for 
the incentive schedule that is consistent with equilibrium. For a given reputation that is simply 
an scalar. This proves Proposition 3. �
Proposition 4. Opportunist portfolio.

Proof. I start from the first order condition in Equation (12),

Xt = ζ−1
t

(
g(pt )λVp − λgJ (pt )/φE

E
[
Vp (pt+,O)

])
�−1κ, (A.34)

where μO = 0 implies the Sharpe ratio maximization incentive m drops out. It is immediate that 
if the unit-variance constraint binds ζt > 0 we have that Xt = Xκ or Xt = −Xκ . This happens 
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if | (g(pt )λVp − λgJ (pt )/φE
E

[
Vp (pt+,O)

]) | > 0, i.e., if reach-for-yield incentives are not 
zero in equilibrium. Because in this case only the sign of the incentives matter, we can write 
reach-for-yield incentives as in Equation (17). When reach-for-yield incentives are equal to zero, 
then the opportunistic expert is indifferent between any portfolio and the equilibrium portfolio is 
the one consistent with a zero reach-for-yield incentive. That is, gJ is pinned down by Equation 
(17). When reach-for-yield incentives are positive we have that Xt = Xκ and gJ = κ+ −X (yI )κ . 
When they are negative we have the other extreme and Xt = −Xκ and gJ = −κ+ − X (yI )κ . 
I prove in Corollary 5.2 below that this case will never happen in equilibrium. �
Proposition 5. Equilibrium portfolios.

Proof. Equation (18) comes from Proposition 3 and it is as the first order condition of the skilled 
type together with the equilibrium restriction that investors beliefs are consistent with the skilled 
expert policy. The second equation comes from Proposition 4 and can be thought as the first order 
condition of the opportunistic type with the added restriction that DO = 0 only holds when the 
constraint (gJ +X (π)κ) ≤ κ+ does not bind.

The third equation comes from the fact that DO cannot be negative in Equilibrium. Note that if 
DO < 0, it follows that gJ < 0, but from Equation (17) that implies DO > 0. Therefore DO > 0
never happens in equilibrium. The last inequality simply state that the tail risk of the opportunist 
expert portfolio is bounded by the investment opportunity set. �
Corollary 5.1. The skilled expert always reaches for yield.

Proof. Note that concavity implies Vpp < 0. Together with ∂X (y)μ/∂y < 0, this implies 
∂DS(p, y|gI

J , y)/∂y < 0 if gI
J > 0. So because y is increasing in y and DS(p, y|gI

J , y) is 
decreasing in y, then they must cross at most once. Note that if DS(p, 0|gI

J , 0) > 0 and 
DS(p, 1|gI

J , 1) < 1, they would cross at least once.
Lets start by showing that DS(p, 1|gJ , 1) < 1. Note that gJ ≥ 0 and Vp ≥ 0. So if X (y =

1)μS − λgJ ≥ 0, the result follows. Lets assume gJ is maximum at gJ = κ+ −X (y = 1)κ , then 

X (y = 1)(μS + λκ) − λκ+ =
√

(μ+
S )2 + (λκ+)2 − λκ+ > 0.

To prove the result remains to show DS(p, y = 0|gI
J , 0) > 0. Note that

Sign[DS(p, y = 0|gJ ,0)]

= Sign

⎡⎣(μ+
S − λgJ ) − λ

gJ

φ

EE
[
Vp

(
p + gJ

φ
× ( gJ

2

) + gJ√
φ
Ỹ , S

)]
Vp(p,S)

⎤⎦ , (A.35)

and that the ratio 
EE

[
Vp

(
p+(

gJ
φ

)2/2+ gJ√
φ
Ỹ ,S

)]
Vp(p,S)

is bounded since 0 ≤ gJ ≤ κ+ and V is continuous 
and bounded. For example, for the transparent benchmark (Corollary 2.1 in this Appendix) this 
ratio is simply

exp

(
−ιS(1 − ιS)(

gJ√ )2/2)

)
, (A.36)
φ
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where ιS =
√

1+ 8ρ

(μ
+
S

)2
+1

2 . Therefore, for φ that is large enough DS(p, 0|gJ , 0) > 0, since (μ+
S −

λgJ ) > 0 for any gJ ≤ κ+. This proves that indeed y > 0 and the skilled always reaches for 
yield. �
Corollary 5.2. Reputation is increasing in performance.

Proof. First note that if DO < 0, gJ < 0, but that implies DO > 0, therefore it will never hold in 
equilibrium. It follows that gJ ≥ 0. If gJ = 0, then DO = 1, what implies gJ > 0, so it can’t be 
an equilibrium either. It follows that gJ > 0. This proves that reputation is always increasing in 
tail-event performance.

It remains to prove that g =X (y)μS −λgJ ≥ 0. Suppose X (y)μS −λgJ < 0. Then it follows 
from (17) that DO < 0. Proposition 4 implies gJ < 0 and that X (y)μS − λgJ > 0 for any y ∈
[0, 1]. This is inconsistent with an equilibrium where g(p) < 0. From Corollary 5.1 we have that 
y ∈ [0, 1]. This proves the result. �
Corollary 5.3. Learning is slower when portfolios are opaque.

Proof. From Equation (8), we have that the speed of learning is

E[|dpt ||θ ] = (X(p,S)μS)2

2

[(
1 − gJ (p)λ

X(p,S)μS

)2

+ 1

λφ

(
gJ (p)λ

X(p,S)μS

)2
]

. (A.37)

From Corollaries 5.2 we have that gJ (p) ≥ 0 and g(p) ≥ 0. This implies that gJ (p)λ
X(p,S)μS

∈
[0, 1]. If φ > 1/λ, then 

[(
1 − gJ (p)λ

X(p,S)μS

)2 + 1
λφ

(
gJ (p)λ

X(p,S)μS

)2
]

is bounded above by 1. It follows 

that E[|dpt ||θ ] ≤ (X(p,S)μS)2

2 . �
Lemma 2. Equilibrium existence.

Proof. Suppose φ is sufficiently high such that DO > 0 and gJ = κ+ − X (y)κ for any y. Un-
der the conditions of Corollary 5.1 we have that DS(p, y = 1|gI

J ) < 1 and DS(p, 0|gI
J ) > 0 for 

any gI
J > 0. Since κ+ − X (y)κ > 0, it applies here. Because DS(p, y) and y are continuous, 

they must cross at least once. This proves that for high enough φ there always exist an equilib-
rium. �
Definition 1. Equilibrium selection: defining the fastest equilibrium. For any p ≥ 0, let 
M(p) = {{y, gJ } ∈ [0, 1] × [0, κ+]|{y, gJ } satisfies Proposition 5} be the set of incentives con-
sistent with equilibria for a given reputation, then the fastest equilibrium satisfies

y∗(p,S) = arg max
{y,gJ }∈M(p)

(αsX (y)μ − λgJ )2 + λ

(
gJ√
φ

)2

. (A.38)

Proposition 6. Expert liquidation.

Proof. Investors liquidate the expert when they can no longer break even for any positive fund 
size, that is when EI

t [σr,t drθ
t − f dt] < 0 for any positive investment at in the fund. Plugging 

Equation (24), I obtain
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σr(P )PXI (P ,S)μS − σr(P )c(0) − f = 0.

This proves the proposition if you substitute f = 0. �
Proposition 7. Equilibrium supply of capital.

Proof. Plugging equation (24) into atft I obtain

atσr,tPXI (P ,S)μS − atσr,t c(atσr,t ). (A.39)

Differentiating with respect to atσr,t , Equation (26) follows. Substituting the transaction cost 
function c(·), I can solve for the optimal fund size σa,t = atσr,t and total dollar fees atft .

In the case of a quadratic cost function I obtain

σa,tψ1 = PX(P,S)μS − (
ψ0 + ψ1σa,t

)
, (A.40)

which yields σa,t = (PX(P, S)μS − ψ0)/(2ψ1) as enunciated in this Proposition. To obtain 
the optimal fee that implements the optimal size choice, I substitute in the investors break-even 
condition [Equation (24)]. �
Proposition 8. Capital flows with opaque and transparent funds.

Proof. From Proposition 6 we have that σa(p, y = 0) = (P(p)μ+
S − ψ0)/ψ1. We have from 

Corollary 1.1 that E[dp|y = 0, θ = S] = (μ+
S )2/2 and var[dp|y = 0] = (μ+

S )2. It follows from 
Ito’s lemma that

E[d(σS
a (p, y = 0)] =P′(p)

μ+
S

ψ1
(μ+

S )2 +P′′(p)
μ+

S

ψ1
(μ+

S )2 (A.41)

E[d(σO
a (p, y = 0)] = −P′(p)

μ+
S

ψ1
(μ+

S )2 +P′′(p)
μ+

S

ψ1
(μ+

S )2. (A.42)

Equation (27) follows.
Now for the opaque portfolio case we have,

E[d(σS
a (p, y)] =P′(p)

X (y)μS

2ψ1
(X (y)μS − gJ (y)λ)2

+P′′(p)
μ+

S

2ψ1
(μ+

S )2

+ λE[(P(p+) −P(p))X (y)μS/φ1|θ = S] (A.43)

E[d(σO
a (p, y)] = −P′(p)

X (y)μS

2ψ1
(X (y)μS − gJ (y)λ)2

+P′′(p)
μ+

S

2ψ1
(μ+

S )2

+ λE[(P(p+) −P(p))X (y)μS/φ1|θ = O] (A.44)

E[d(σS
a (p, y) − dσO

a (p, y))] =P′(p)
X (y)μS

ψ1
(X (y)μS − gJ (π)λ)2 + (A.45)

+ λ (E[(P(p+)|θ = S]
−E[(P(p+)|θ = O])X (y)μS/φ1
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A second-order Taylor approximation for the difference in after tail event reputations yields 
(the second order terms wash out because they are the same for both types),

(E[(P(p+)|θ = S] − E[(P(p+)|θ = O]) ≈P′(p)
gJ (y)2

φ
.

Plugging back in the Equation (A.45) above I obtain Equation (28). �
Corollary 8.1. Capital flows slower when the fund is opaque.

Proof. The proof is an immediate implication of taking the limit φ → ∞ for Equation (28)
together with the fact that gJ (y) > 0. �
Corollary 8.2. Capital flows faster when the skilled expert reaches for yield.

Proof. Differencing out Equation (28) with respect to y we obtain

∂E
[
d(σS

a (p, y) − σO
a (p, y))|y]

∂y

= P′(p)X (y)μS

ψ1
2(X (y)μS − gJ (y)λ)(X ′(y)μS − g′

J (y)λ).

+ P′(p)X (y)μS

ψ1
2

(
λ

gJ (y)g′
J (y)

φ

)
+ P(p)X ′(y)μS

ψ1

(
X (y)μS − gJ (y)λ)2 + λ

g2
J (y)

φ

)
. (A.46)

Recognizing that X ′(y = 0) = λκ+
μ+

S

Xκ and X (y = 0) = X∗, it follows that

∂E
[
d(σS

a (p, y) − σO
a (p, y))|y]

∂y

∣∣
y=0 = P′(p)μ+

S

ψ1
2

(
μ+

S − κ+(λ + 1

φ
)

)
(λκ+)2

μ+
S

, (A.47)

and from this it is immediate that

Sign

[
∂E

[
d(σS

a (p, y) − σO
a (p, y))|y]

∂y

∣∣
y=0

]
= Sign

[
μ+

S − κ+(λ + 1

φ
)

]
. (A.48)

This proves the result. �
Proposition 9. Equilibrium valuations: an analytical solution.

Proof. From Proposition 3 it is immediate that φ → ∞ implies y = 1. Therefore the optimal 

portfolio for the skilled expert is X (y = 1) = μ+
S√

(μ+
S )2+(πλκ+)2

X∗ + λκ+√
(μ+

S )2+(λκ+)2
Xκ and from 

Proposition 4 the opportunist is in a corner, choosing κ+.

This implies that g(pt ) =
√

(μ+
S )2 + (λκ+)2 − κ+. Substituting in the Bellman Equation (10)

the optimal choice, I obtain
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ρV (p,S) = atft + Vp(p,S)
g2

2
+ Vpp(p,S)

g2

2
. (A.49)

ρV (p,O) = atft − Vp(p,O)
g2

2
+ Vpp(p,O)

g2

2
(A.50)

Substituting atft = f in the ODE above, I obtain

V (p,S) = f

ρ
+ K1e

−
1−

√
1+ 8ρ

g2

2 p + K2e
−

1+
√

1+ 8ρ

g2

2 p (A.51)

V (p,O) = f

ρ
+ K3e

−
−1−

√
1+ 8ρ

g2

2 p + K4e
−

−1+
√

1+ 8ρ

g2

2 p. (A.52)

Imposing the boundary conditions V (0, θ) = 0 and that V (∞, θ) = f
ρ

, I obtain the solu-
tion. �
Appendix B. Microfoundations for the transaction cost function c(·)

We now provide a microfoundation for the source of decreasing returns to scale for an expert. 
Specifically, we provide a microfoundation for the cost function c(·). This section also provides 
a natural motivation for the fact that experts are exposed to idiosyncratic shocks and face differ-
ent investment opportunities, specifically a different vector of expected returns μθ . The idea is 
that each expert has knowledge and trades in a particular local market where local investors have 
hedging needs with respect to market-specific risks. Together these ingredients generate hetero-
geneity in skill, decreasing returns to investment at the expert level, and idiosyncratic risk that 
are idiosyncratic to the expert.

An expert of type θ trades n assets with a representative local hedger. The local hedger has 
mean-variance preferences with risk-aversion ψ1 and endowment vector Eθ . The vector of en-
dowments controls the gains from trade between the expert and the local hedger. A skilled expert 
has access to a market where local hedgers have large hedging demands |ES| > 0, while the op-
portunistic type trades in a market where local hedgers do not have any hedging needs EO = 0. 
Regardless of their type, the expert has operational costs that scale with the riskness of the fund 
position ψ0σa . While it would be puzzling that managers would have to pay a fixed cost simply 
to hold an asset, these assets should be thought more broadly as investment strategies which re-
quire costly trading. For example, holding a portfolio that buys the market for high-yield bonds 
involves substantial churning and transaction costs.

The utility of the local hedger if they sell vector Q of local assets is

U((Eθ − Q)dR) = E[(Eθ − Q)(dR − ρ)] − ψ1

2
V ar((Eθ − Q)dR), (B.53)

which yields the following first order condition: E[dR − ρ] = ψ1V ar(dR)(Eθ − Q). This FOC 
pins down expected returns of the local assets, given an expert asset allocation Q. Using the 
decomposition Q = aXσr , where X is a unit-variance position, σr is the fund return volatility, 
and a is the fund assets under management, we can write the expert total dollar returns as

QE[dR − ρ] − ψ0σa = Qψ1V ar(dR)(Eθ − Q) − ψ0σa (B.54)

= σaXψ1V ar(dR)(Eθ − σsX) − ψ0σa (B.55)

= σaψ1XV ar(dR)Eθ − ψ1σ
2
a − ψ0σa (B.56)
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QE[dR]
σa

= Xψ1V ar(dR)Eθ − ψ1σa − ψ0 (B.57)

We now define μθ = ψ1V ar(dR)Eθ and c(σa) = ψ0σa + ψ1σ
2
a to obtain the fund expected 

results in the following form:

QE[dR] = σaXμθ − c(θ). (B.58)

This is exactly the functional form we adopt through out the paper.
Note that operational costs ψ0 are important only to guarantee that an expert is liquidated for 

a reputation P > 0. This creates liquidation risk and is essential for the paper mechanism. The 
assumption that operational costs increase with asset risk σa is not important. Operational costs 
could also be of the fixed cost type and the cost function given by c(σa) = ψ0 + ψ1σ

2
a . The only 

important difference is that the expert would be liquidated before the fund assets reached zero 
due to the fixed operational costs.

We see that the opportunistic expert has zero expected returns because EO = 0, but as he 
invests more assets in the local market, he must invest at increasingly more negative returns 
to compensate local hedgers for the risk that they must bear. The skilled type earns expected 
return μS > 0 in the first unit invested, because local hedgers are exposed to risk due to the 
asset endowment that they own. As local hedgers sell more of their endowment, the required 
compensation for bearing risk goes down, leading to a reduction in expected returns.

This framework also directly links the model’s quantity predictions to predictions about 
equilibrium expected returns. Specifically, assets that receive larger flows have lower expected 
returns in equilibrium. This can immediately be seen from the local hedgers first-order condition: 
E[dR − ρ] = ψ1V ar(dR)(Eθ − Q), i.e., an increase in Qi reduces asset i expected returns.

Appendix C. Numerical solution

I apply the finite-difference method to solve the integro-differential equation (10). To solve 
for optimal policies, I sequentially iterate until the value functions converges. The pair of value 
functions {V (p, S), V (p, O)} and portfolio choices {y(p), gJ (p)} are determined jointly. The 
state space consists of manager reputation in log-likelihood space (p ∈R+).

I first discretize the state space as follows. I construct a grid with limits {0, p} and N grid 
points. Let z = (p + 1)1/N ; I populate the grid by setting p(j) = zj − 1. Using this grid, I 
discretize Equation (10) using central differences as described in Candler (1998).

First I hold the incentive distortion constant at zero, y(p) = gJ (p) = 0, and iterate to find the 
solution to the transparent portfolio problem {V (p, S), V (p, O)}tr . The transparent liquidation 
threshold is a lower bound to the equilibrium liquidation threshold, because the expected return 
of the skilled expert is the highest. Starting from the transparent liquidation policy and value 
function, I iterate on equation (10), and each time I solve for the pair of choices {y, gJ } at each 
step.

More specifically, the iteration procedure can be divided into the following steps.

1. Given [y(p)]i−1 and [gJ (p)]i−1, solve for [X(P, θ)]i , [σa(p)]i , [f (p)]i , [P ]i , using 
Lemma 1 and Propositions 5, 6, and 7.

2. Solve for [V (p, S), V (p, O)]i using the discretization of Equation (10) and the boundary 
condition V (0, θ) = 0.

3. Given [V (p, S), V (p, O)]i solve for [y(p)]i and [gJ (p)]i using Proposition 5 and Defini-
tion 1 (see discussion below).
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4. If | (V (p,S))i − (V (p,S))i−1 | < ε and | (V (p,O))i − (V (p,O))i−1 | < ε are not satisfied, 
repeat steps 1 through 4.

The procedure converges extremely rapidly and takes no more than five iterations for a typical 
solution. The typical solution time is 30 seconds. Code is available upon request.

C.1. Fixed point

Step 3 consists of finding the fixed point of equation (14) that is consistent with the fastest 
rate of learning. For each reputation pj grid value, I construct a grid with limits {y, 1} and Nπ

grid points, where y is a low negative number. I populate the grid using equal spacing across grid 
points. This produces N × Ny yj,l values. I look for all values of yj,l , where the expression

yj,l −DS(pj , yj,l)

switches sign. The term DS is defined in Proposition 3 and 5.1. This step identifies all incentive 
functions consistent with equilibrium. Specifically, for each grid point pj , there is a set 	j that 
includes all incentives yj,l for which yj,l = DS(pj , yj,l). If for a given reputation pj the set 	j

is a singleton, this incentive yj,l ∈ 	j defines the equilibrium for reputation pj , that is, yj = y, 
where y ∈ 	j . If there is more than one yj,l ∈ 	j , then I compute

yj = arg max
y∈	j

(
αsX (y)μS − λgJ (pj , y)

)2 + λ

(
gJ (pj , y)√

φ

)2

(C.59)

according to Definition 1 and select the one with the largest learning rate.

Appendix D. Assumptions

A key modeling assumption is that intermediaries face a investment opportunity set that is rich 
enough to allow some reach-for-yield, but not too rich to allow unbounded gambling. This fits 
well with most of the investment management industry, where managers are constrained by in-
vestment mandates to a varying degree. Managers cannot trade arbitrary payoffs without raising 
red flags, but can easily distort their portfolio toward assets with high tail-risk exposure that are 
otherwise very similar. Coval et al. (2009) provide a useful example of such differences within 
the fixed income market. The assumption that tail risk cannot be perfectly measured even ex-
post is realistic and also theoretically important. It avoids the situation where small performance 
differences during tail events are perfectly informative about the intermediary portfolio. This 
would be unrealistic and an artificial by-product of the continuous time environment. It would 
also introduce a lot of new equilibria. Intuitively, as the signal-to-noise ratio grows to infinity, all 
managers have strong incentives to conform exactly with investors expectations. In this sense, 
tail-risk volatility does something similar to the effect of private information in the global games 
literature.

Another critical assumption is that intermediaries can only use performance to signal their 
type. The assumption that there are no other signaling mechanisms is likely to be counter-factual 
in most environments. However, all that is required for the model’s fundamental mechanism 
to work is some asymmetric information about intermediary skill between investors and the 
intermediary. If this is the case, investors will use performance to learn about intermediary type, 
and the link between capital immobility and reach for yield will exist. This is obviously realistic 
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and consistent with the positive relation between past performance and flows present in the data 
for most intermediaries.

The assumption that there are only two intermediary types is stylized, but necessary for 
tractability in an environment where asymmetric information is persistent. Previous studies 
on the interaction of learning and investment decisions in money management (for example, 
Makarov and Platin, 2015) work in an environment where information about manager quality is 
symmetric across investors and managers. The assumption that the manager knows more about 
his quality is key to generating the link between reaching for yield and slow-moving capital. It is 
essential that managers who are observationally identical (same reputation), behave differently as 
a function of their privately known skill. This produces variation in reaching-for-yield incentives 
and renders performance less informative.

The contractual environment fits most mutual fund industry contracts well, and is consistent 
with the leading work-horse model in the money management literature (Berk and Green, 2004). 
However, it is admittedly stylized and abstracts from many realistic features present in the con-
tracts of more sophisticated financial intermediaries, such as hedge funds.

Before discussing how the introduction of performance contracts would change the model 
results, it is useful to contrast the incentive problem that arises here with the one that shows up 
in the moral-hazard based models (for example, He and Krishnamurthy, 2013). There, perfor-
mance incentives are needed to induce work or avoid tunneling by the intermediary. Here, it is 
driven by reputation incentives that arise endogenously from the sensitivity of the intermediary’s 
human capital to his own performance track record. Provision of full insurance to the intermedi-
ary would implement the first best, but it is not feasible if there is competition among investors. 
Intuitively, investors outside of the relationship would make outside offers to intermediaries that 
are performing well, unraveling the insurance scheme. The fundamental force is inalienability of 
human capital (Hart and Moore, 1994): the intermediary cannot commit to supply human capital 
in the future at below-market price.

The introduction of symmetric performance fees has no impact on the investment behavior 
of the opportunistic type, but pushes the skilled experts toward the Sharpe portfolio. Intuitively, 
no matter his portfolio choice the opportunistic expert generates zero expected excess return, 
so a linear performance schedule does not influence his choice. Thus, linear incentive fees have 
the effect of further slowing down the flow of capital into the skilled intermediary, but have the 
positive effect of improving the efficiency of the static capital allocation by the skilled type, and 
therefore lead to higher expected returns.

Nonlinear contracts could potentially increase the speed of capital flows if they induce incen-
tives on the opportunist type to perform well during a tail event. If the contract is sufficiently 
nonlinear, it could induce gambling on the opportunistic type, counter-balancing the reputation 
incentives. In practice, the typical nonlinear contract used among financial intermediaries, the 
high-water-mark contract, is likely to have a mixed effect on incentives. When the fund is suffi-
ciently far from the high-water-mark, the contract places more weight on large return realizations. 
This would nudge the intermediary in the right direction. But when the manager is close to the 
high-water-mark, the contract is linear on small return realizations, but places less weight on 
really bad return realizations. This pushes the manager choice in the wrong direction.

Appendix E. Parameter choice

The model has four key parameters – μ+
S , κ+, φ, and λ. The empirical plausibility of the 

parameter choice used in the text is discussed below.



A. Moreira / Journal of Economic Theory 183 (2019) 907–951 949
The scarcity of capital is measured by the Sharpe ratio of the skilled intermediary before 
transaction costs and fees, μ+

S . I calibrate μ+
S S = 1, which is reasonable since this matches the 

Sharpe ratio of successful hedge fund managers. The average intermediary generates much less 
than this value. The model’s quantitative implications for the speed of capital flows are stronger 
for lower values of μ+

S , holding λκ+ constant, and are unchanged if κ+ decreases proportionally 
to μ+

S . The intuition for this result is that what matters for the reduction in the speed of capital 
flows is how much of the normal-times performance advantage of the skilled type (μ+

S ) can be 
matched by the opportunist taking on tail risk. This can be seen clearly in Equation (8).

The second key parameter is κ+, which is the maximum tail exposure a portfolio of unit vari-
ance can achieve. I set κ+ to 2, which implies that in a portfolio with 10% standard deviation, 
the intermediary can find (hidden) opportunities to have a tail loss of 20%. Given the recent 
losses experienced in some fixed-income markets, this tail exposure seems plausible. For exam-
ple, many of the economic catastrophic bonds of Coval et al. (2009) dropped to almost zero in 
the aftermath of the crisis. This parameter should strongly vary by asset class and investment 
mandate. What is important is that λκ+ is of the same order of magnitude as μ+

S . For example, 

in this calibration λκ+ = μ+
S

2 . If κ+ is much lower than this, then the effects on the speed of 
capital flows are small. Intuitively, capital immobility is a direct result of the flexibility that the 
opportunistic type has in taking on tail risk.

Tail-risk volatility determines how informative tail-event performance is. My baseline cali-
bration uses 

√
φ = 3, which is in line with recent experience. For example, some measures of 

realized stock market volatility in the fall of 2008 were 80%. This compares to an average market 
volatility of 15%. In fixed-income markets, this difference is likely to be even larger. As φ grows, 
the economy converges to the case of Proposition 9. As φ shrinks to zero, tail-event performance 
becomes completely revealing about the intermediary portfolio. Such a parametrization greatly 
increases the scope for multiple equilibria. More on this topic is discussed in Appendix D.

Tail event frequency λ determines the degree to which reaching-for-yield can boost perfor-
mance during normal-times, but also determines how quickly the tail event arrives. The first 
effect increases the temptation of the intermediary to reach for yield, while the second effect acts 
in the opposite direction, as a disciplining force. I calibrate λ to 0.25, consistent with a tail event 
every four years. This number is consistent with recent experience. For example, in the past 20 
years the world economy experienced the “Tequilla crisis” (1994), the “Asian crisis” (1997-8), 
the “Tech bubble” bust (2000), the more recent financial crisis (2007-2009), and the European 
sovereign debt crisis (2011-2012).

Other less important parameters include ρ, ψ0, ψ1, and μ�
S �κ . I set ρ = 0.05. I set ψ0 to 

target a liquidation threshold of 0.5, but this choice is arbitrary. The model works identically for 
any positive choice of ψ0, only changing the liquidation threshold and the long-run size of the 
fund. It is important that ψ0 > 0 so that managers face liquidation risk. The decreasing-returns-
to-scale parameter ψ1 is set so that the amount of capital allocated to the intermediary peaks at 1. 
This is also an arbitrary choice.

I assume μ�
S �κ = 0 and μS ∝ 1n throughout most of the paper. This implies that the Sharpe 

and Tail-risk portfolios are exactly orthogonal and expected returns are constant across technolo-
gies. Economically this means that the Sharpe portfolio has zero tail exposure and the price of 
tail risk is zero. These assumptions control how much more yield the expert can find in her op-
portunity set relative to the Sharpe portfolio. For the choice μ�

S �κ = 0, this difference is given 
by κ+. For the more general case, this would be given by
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κ+ − μ�
S �−1κ√

μ�
S �−1μS

. (E.60)

Both an increase in the average tail risk across assets and an increase in the price of tail risk 
have the effect of reducing the spread in tail risk across portfolios. As discussed before, the results 
of the speed of capital flows rest on the assumption that the difference in tail exposure between 
the Sharpe portfolio and the maximum tail exposure feasible are economically meaningful.
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